«»UK Patent Application . GB 2 366 499 ., A

{43) Date of A Publication 06.03.2002

{21) Application No 0021081.5

(22) Date of Filing 25.08.2000

{71) Applicant(s)
Copyn Limited
{Incorporated in the United Kingdom)
10th Floor, One America Square, Crosswall,
LONDON, EC3N 2PR, United Kingdom

{72) Inventor(s)
Geraint Edwards
Christopher Ne_edham

(74) Agent and/or Address for Service
Reddie & Grose
16 Theobalds Road, LONDON, WC1X 8PL,
United Kingdom

(51) INTCL’
GOS6F 17/30

(52) UK CL (Edition T)
H4T TDXX

{56) Documents Cited
EP 0944009 A2
W0 98/44434 A1

EP 0859330 At

(68) Field of Search
UK CL (Edition S) H4F FDX , HA4T TBEC TBEX TBLA
TBLX TDXX
INT CL7 GOGF 17/30
ONLINE: WPI; EPODOC; JAPIO; INSPEC; XPESP;

COMPUTER

(54) Abstract Title
A method of storing a portion of a web-page

(57} Portions of mark-up language pages may be stored in an on-line repository. The user selects a portion of ;
a page for storage using a pointer device and an extension to a browser context menu. If the mark-up code for {
the selected portion corresponds to a predefined meaningful element, the DOM node to which it refers is ‘
identified and the node tree traversed to look for meaningful collections of elements, the raw HTML is then

extracted and sent to a new window where it can be selected and stored in a remote database. The database is

configured to enable a scrapbook like presentation of displayed elements with elements displayed as cards.

Cards may be stored in a number of leaves and card parameters, and leaf configurations may be customised

by a user. Access rights can be granted to allow elements in a given repository to be viewed by others.

Uy acoemses cormmnt s [~———= 100
oo o o Pl

t

Horsts of pdpind st §
Orviaar) b s n
i

—

108

"-—Wl‘
war, mgurne i
-

Noywten

W

¥

mn-—u.---__"&qoe
110
S0 PSS fr dacry
L

uz

P ety of anch

Ropmrines 116
—_—
114
irivinripmtyid
......
127
/122
118

12"\ Yo

e

Fgure 7

®

6617 99€ ¢ 99

1/11

Hotals

Default

14

16

FIGURE 1

2/11

,.?E'_‘!LE'
Mora sbeut
Domala Hames @

and reference centre. Today we tell the story ‘; ¢
of Jerusalem and William Biake's vision of
paradise.

mRIe.,

FIGURE 2

3/11

L T R R Lt R R

FIGURE 3

4/11

¥ hilp: Ihaneway/mnullalmuzLavu himl - Microsolt Internet prlme«

: ‘&:ﬁ‘%::w

81 . iEning R T e R R R s e e B

FIGURE 4

5/11

[5 An HTML/DOM llustiation - Mictosoft Internet Explorer

o)

FIGURE 5

6/11

nodeType : 1
lagName : HTML
chidNodges : 1
] —
—
nodeType : 1 nodeType : 1
tagNanme : HEAD tagName : BODY
childNodes : 1 an_nbmes:bgcolomossoo
. chidNodes : 2
,__________ f '
nodeType : 1
nodeType : 1 |ﬂ9Nu¥: FONT nodeType : 1
togName ; TITLE attribules:boorr=#008800.sizem+2 tagName : TABLE
chiidNodes : 1 mlidNode's) * childNodes : 2
i j 1
N 1 —
)
nodeType : ¢ nodeType : 1
nodeType : 3 nodeType : 3 tagName : TR tagName : TR
nodeValue:"An HTML/DOM Ifustration® nodeVae:"This is my Tabje:* attriunes:valign=Top altributes:valign=Bottom
childNodes : 2 childNodes : 2
J i] L
I [! ! 1
nodeTyps : 1 aodeType : 1 nodeType : 1
tagName : TD nodeType : 1 tagName : TD tagName : TD
chixdNodes : 1 tagName : TD childNodes : 1 chiidNodes : 2
childNodes : 1
— — . [
nodeType : 1 nodeType : 1 nedeType: 1 .
lagName : IMG tagName : A tagName : A nodeType : 3 w' MN':x"A‘
mtiributes:sroca/image/USWEST.gif atisibutes:hrefspesthtmi ftmd : are better® childN g '
chikiNodes : 0 chikiNodes : 2 chikiNodes : 1 odes :
nodeTyps : 1 nodeType : 4 nodeType : 1
tagName : IMG nodeType : 3 aghame : IMG tagName : IMG
attributes:sro=/tmeage/ettontd0 nodeValue:"Apricals are tasty” atiributes sro/image/Strangs atiributes:sr=/anage/USWEST.gif
chikdNodes : 0 chidNodes : 0 chitdNodes : 0 i

FIGURE 6

7/11

User activates context menu 1 00
over item of interest
A 4
Handie of highlighted node | 102
("myNode"} is passed o M-t D R R
script :
4
i . 104
Script Identifies nodeType of
"myNode” , tagName and
108 attributes
Add this Element to our list of ! 106
N l¢———Yas Element - according to
maesningful Elements ruleset?
112
Regardless l
110 Pass handie of each
Ara there any chitdNode in tum o script and
childNodes? Yes process i repeated for each
childNode
[
Regardless 1 1 6
114
Is parentElement of Pass handle of parentElement
current Node the BODY No——p| toscriptand processis f------
element? repeated.
an
e
120\ ves /1 22
118
. . " Script finished. Wea have aur
Add this Element to our list of ¢ Yes Is policy to capture Regardless—»| fufl collection meaningful

meaningful Elements BODY elements?

Figure 7

elemants.

8/11

132

FIGURE 8

nodeType : 1
tagName : HTML
chikiNodes : t
! [
1
. nodeType : 1
nodaType : 1 N
tagName : HEAD h:"Namo .:ODY [rees 1 4 2
chiidNodes : 1 au“ mm.:‘?e;m-conuco
: I [
I .
nodeType : 1
T TITLE faghame: N n“:dr::y" Tasee =140
tagName : AMtributes:bgcoior=#008600,size=+2 gRame :
chikdNodes : 1 chidNodes : 1 childNodes : 2
T
[)
nodeType : 1 noceType : 1
nodaType : 3 nodeType : 3 taghame : TR lagName : TR
nodeValua:"An HTML/OOM “This is my Tabla:* attributes:valign=Top 1 3 8 atttbutes:vaiign=Bottom
childModes : 2 chidNodes : 2
]
] —— =/
nodeType : 1 o nodeType : 1 nodeType : 1
tagName : TO nodeType : 1 136 tagNamoe : TD tagName : TD
childNodes : 1 tagName : TD chiidNodes : 1 childNodes : 2
childNodes : 1
R r [
nodaType : 1 nodeType : 1 0
iagName : IMG isgName : A . nedeType ;3 et m:m’?A
atirbutes:srea/imaga/USWEST .o ; e e -
ehidNodes : 0 chikdNades ; 1 chidNodes : 1
nadeType : 1 nodeType : 1
tegName : IMG tagName : IMG
attributes:sres/imege/Strange etuibutes sTerATageUSWES T gif
childNodes : 0 chidNodes : 0

9/11

l 5 O—_ l
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, N Creale a blank string
. CmyHTML)
___I__.'
Y,

s g‘ll.’E:AnE :‘I;m':gl DnE' ;yp& _’(Kmelmh A
> “~ TEXT_NODE? ,/‘
!

Yes
¥
Add to "myHTML" in this sequence: 1
1. Opening < and tagName !
156 | 2. Any non-blank atiributes Append "°d°v"“° to |
3. Any non-blank styls settings ‘
4 Closing > l
T J
!
Y
|
1 6.0~ mma| Pass nandie of anch chilaneds 1
in lum to script and process I 58 Are there any mo!
rapasted recursively for eachjd———Yo3 p 4
Resutt is app chitdNodes?
to ‘myHTML -
164 ~ No

162

Append endtag to myHTML4——Yes: an end 1ag?

FIGURE 9

10/11
206

23 Select the Element to be saved - Microsoft [nternet Exploier

HIML/BOM. tHuttraton < M)
Yiow::. Fayories

FIGURE 10

11/11

FIGURE 11

10

15

20

25

30

2366499

Capture, Storage and Retrieval of Markup Elements

-- This invention relates to the retrieval of content from

the Internet , and particularly to the storage and

retrieval of that content.

World wide Web browsers, such as Netscape Navigator,

hereafter referred to as NN, and Internet Explorer,

-hereafter referred to as IE, provide functionality to aid

the web browsing experience. The creators of web browsers
recognise that users have particular pages that they wish
to revisit, and so incorporate functionality to allow the
user to add a page to their “favorite” (IE) or “bookmafk”
(NN) list. This list is stored on the user’s computer (or
network file system) in a tree-like hierarchy, enabling
the user to create a simple classification of information.
Each favorite or bookmark is represented by a text
description (and in some circumstances a small icon).
Users can customise the .description of each
favorite/bookmark, to a limited extent, with the default
Leiﬁg.the title of the page. 1In the latest version of IE,
version 5, the user can change the icon associated with a
favorite, but this is somewhat cumbersome; the default

option is to use an icon provided by the web publisher.

Although the bookmark and favorite options are useful,
they suffer from a number of disadvantages. There is no
mechanism for informing users when pages in the
favorites/bookmarks list have become stale or their
content has changed significantly. However, there is a

function in IE which allows the user to make a copy of a

--web page and store it off-line, in which case IE can

inform the user if the content of the online version has

changed from that ¢f the stored copy.

The context menu, obtained by clicking the right mouse

button over a specific item on a page in the MS Windows

w
(=)

- 2 -

operating system provided by Microsoft Corporation,
enables the user to save the link associated with that
individual item. 1In NN, the user can bookmark the link
associated with an image, and also save the image itself;
"however the link and the image are stored as two éeparate
entities. The context menu is launched by different

methods in different operating systems.

Furthermore, there are no mechanisms to enable the easy
access of bookmarks/favorites from different computers, or
—Nﬁo éhare them with other people, or for a number of
different users to work collaboratively on them. However,
to a limited extent, and in a cumbersome way, these things
can be achieved in part by using the import and export
functions for bookmarks/favorites.
Recognising the limitations of the favorite/bookmark
functionality of web browsers, a number of companies have
created alternative services and products that attempt to

improve on certain aspects of the browser functionality:

--Backflip, Blink and HotLinks, whose products are available
at: www.backflip.com, www.blink.com, www.hotlinks.com

each provide an online implementation of the basic browser
bookmark/favorite functionality, together with
organisation and search capabilities.

The main benefits are that users can access their
"booKkmarks from any computer and, if they choose, share
them with other people. The main way of activating the
service is for the user to register online and download a
simple DHTML scriptlet, which adds the functionality to
the user’s browser, and adds “Backflip”, “Blink” or
“HotLinks” buttons to the personal tool bar (IE) or link
“bar (NN). The other way is for web publishers to opt-in
to the service and display “Backflip”, “Blink” or
“HotLinks” button to the personal tool bar, IE, or the

link bar, NN. The scriptlet does nothing more than

10

15

20

25

30

determine the URL of the page being read and send it to a

server. The other way is for web publishers to opt-in to
the services and display “Backflip”, “Blink” or “Hotlinks”
icons on their web pages, which a user can click to save a
given page to their online collection. Hotlinks can also

tell users if pages have expired or are no longer

. available.

Although these services address some of the disadvantages
of browsers discussed above, the user is limited to
bookmarking whole pages or frames, rather than links or

images within a page.

Yahoo! Companion provided by Yaheco, Inc. and available at
docs.companion.yahoo.com is a package of services, a
feature of which is called Y!Bookmarks which, like
Backflip, Blink or HotLinks, is an online implementation
of the basic browser bookmark/favorite functionality. The
service is activated by the user to registering online and
downloading a plug-in, which adds the functionality to the
user's browser. The new functionality manifests itself as
a whole new tool bar which includes a Y!Bookmarks button,
amongst others. While the implementation is more
sophisticated than the other on-line services mentioned
ébo?e, the benefits and limitations of Y!Bookmarks are

similar to those of Backflip, Blink or HotLinks.

clicVu, which can ke found at www.clicVu.com is a service

which enables users to save banner adverts in an online

V;ollection of banner adverts. The main benefit of this

service arises from the fact that, on any given web page,
the banner advert(s) are regularly refreshed, so.
bookmarking the whole page does not save the particular
advert of interest to the user. Another benefit of the

service is that the bookmarked items are represented

.visually in the user’s online collection using the

original banner advert images. This service reguires the

10

15

20

30

- 4 -

advertiser/publisher to opt-in and display a “clicvu” icon
on their banner adverts, on which the user clicks. Unlike
Backflip, Blink, HotLinks and Y!Companion, the user does

not have to register with clicVu (though only limited

ffeatures of the service are available to users who do not

register). The service has the disadvantage that it is
limited to banner adverts, and only those where the
relevant advertiser/publisher has opted in to the service.
It allows users to save one specific type of element and
it does not save generic HTML (Hyper Text Mark Up
Language) elements, requiring the publisher/advertiser to
opt in. What is saved in the user’s collection is not

under the contrecl of the user.

Visual Bookmarks, available at WWW.Vvisualbookmark.com is

-.pne of a small number of bookmark services that associate

images with bookmarks. In each case the image is a full or
partial windows screen dump of the browser window - in
other words it is a static bitmap representation of the
page. Any web links associated with these static images
will be set to the URL of the page.

The above examples are all either browser or on-line
services. In addition, the following systems, while not

bookmarking technologies use related concepts.

Napster, available at www.napster.com is a service that

allows users to make their MP3 files available to other
users online and to search for music files in which they
may be interested. It is a combination of a searchable

directory and a tool that users can download to make MP3
files on their hard disks available on the web (even if

they are not running a web server on their machine) .

.Although not strictly a bookmarking service, by adding

their entries to a public directory it could be considered

to be a form of public ‘bookmarking’ for MP3 files.

w

10

15

20

25

- 8 -
]

__The Windows type operating environment provides a wide
number of WYSIWYG (What You See is What You Get) operating
environments for computer users, including Microsoft

Windows, MacOS, KDE (under X-windows).

These allow the free positioning of ‘windows’ on the
__user’s screen with an element of memory associated with
them. Applications can ‘remember’ were sub-windows are
when they are closed and reopened. These systems, within
constraints, allow users to cut and paste items from one
application to another. This is not possible with the
dynamic content of web-pages beyond a very limited pasting
_.of URLs as HTML links. In some applications, for example,
MS Word available from Microsoft Corp., it 1s possible to

cut and paste individual items from a web page, for
example an image, but this creates a local copy and cannot

be free-positioned or manipulated.

Storing traditional bookmark files on a network file

Ls

system, (with appropriate user permissions set), allows a
limited form of collaboration and some machine
independence for users. However, this will often not work
well on networks employing more than one operating system
such as Unix and Windows because of file permission

-~difficulties.

It will be seen from the above discussion that all
existing systems for accessing frequently visited web
sites suffer from some or all of a number of

disadvantages.

All the prior art systems have the disadvantage that only
a very limited number of items types can be "“bookmarked”.
The only items that can be bookmarked by any combination

of the products available at present are:

1

1

2

(o8]
()

0

5

0

- 6 -

The location of a whole page or frame;

A text based link; or

..Banner advertisements. The latter is only possible with

clicVu when the advertiser has opted in.

Moreover, representation is always tabular or
hierarchical. Furthermore, representations of
bookmark/favorites is generally text based, the only
exceptions being clicVu which is limited to one specific
wapé of image and then only when the publisher/advertiser
opts in, and Visual Bookmarks which uses a static bitmap
of the user’s screen to represent the link. The prior art
has the further disadvantage that the representation is
static, in that there is no way to resize or reposition

bookmarked elements.

The online services referred to have the further
disadvantage that they can only capture full page URLs,

not even text based linKs are possible.

The browser based services have the further disadvantage

~that they do not store bookmarks online for easy access

from many locations;

There are no collaboration capabilities, apart from

sharing a set of bookmarks over a network, and

Bookmarked elements can become “stale” with no warning or
.- . g

way of checking other than opening each bookmark in turn.

The present invention, in its various aspects aims to
overcome the above mentioned disadvantages and to provide
improved storage of web page elements for retrieval by

users.

According to a first aspect of the invention, there is
provided a method of storing a portion of a mark-up

language page, comprising the steps of: identifying, from

10

15

20

25

30

a visual representation of the page, a portion of the
visual representation of the mark-up language page to be
stored; identifying a list of candidate mark-up elements

from a predefined set of elements for storage; selecting

elements from the list; and storing the selected elements.

The invention also provides apparatus for storing a
portion of a mark-up language page, comprising: means for
identifying, from a visual representation of the page, a
portion of the visual representation of the mark-up

language page to be stored; means for identifying a list

"of candidate mark-up elements from a predefined set of

elements for storage; means for selecting elements from

the list; and means for storing the selected elements.

Embodiments of the invention have the advantage that any

meaningful portion of a website can be selected and

“"bookmarked. For the avoidance of doubt, the term

“bookmarked” is used to convey the intention of making a
note of the location of'an item for subsequent retrieval
and is not limited by the prior art. Preferably, the
selection of the identified portion comprises selecting an
Internet browser context menu and selecting a command from

the menu.

Preferably, identifying a list of candidate mark-up
elements comprises identifying the node of the document
object model which represents the selected portion and

extracting the markup code for the identified node and

"storing that markup code. The markup code may be in HTML

or any other suitable markup code such as XML.

Identifying the node includes traversing the node tree of
the DOM and identifying ancestor and descendent nodes

representing markup elements in the set of predefined set

“of markup elements.

10

15

20

25

30

- 8 -

Node tree traversal may also include establishing a list
“of markup elements from the predefined set. Node tree

traversal may also comprise determining from a predefined

rule set whether a given node represents the end of a node

tree traversal in a given direction.

The preferred embodiments of the invention allow the

' capture of any generic meaningful element or meaningful
collections of elements at the users selection. This does
not require the publisher of the web page in question to
subscribe to any service or to opt-in and is wholly

independent of the publisher.

~This preferred embodiment has the advantage that the
elements can be viewed in a free-form non-hierarchical
manner which presents a far more user-friendly view to the
user. The user can see the visual representation of the
actual elements stored and not simply a text heading or
the like.

—— f

Preferably, the repository comprises a plurality of cards,
each card comprising a visual representation on screen of

a stored identified portion.

Preferably, the cards are arranged into leaves, each leaf

..comprising at least one card.
Preferably, the cards are moveable around the leaves.

Preferably, each card may form a part of one or more

leaves.

---Preferably, a plurality of leaves may be arranged into
views, each view comprising a set of identified web page

portions and their attributes.

Preferably, a given leaf may form a part of a plurality of

views.

10

15

20

25

30

-9 -

The preferred embodiments of the aspect of this invention
permit the user a wide degree of flexibility including the

ability to cross-reference, define their own

—”categdrisation options and their own display options.

Preferably, access parameters may be defined whereby
access to a user’'s stored web page portions may be limited
to the user, available to any third party or partially

restricted according to the access parameters.

This preferred embodiment has the advantage that the user
has complete flexibility over who can see his stored

portions.

Preferably, the repository comprises database for storing

_mark up elements chosen from a set of defined acceptable

mark up elements and representing portions of a web page,
the database comprising a plurality of tables including an
element data table for storing data about the mark-up
elements; a card data tdble storing information about the

display, formatting and positioning of the element data

—-stored in the element data table; a leaf data table for

storing data regarding cards which can be displayed in a
common leaf; and a view data table for storing data about

collections of leaves.

The structure embodying the invention allows the complete

_flexibility in the display, categorisation and cross

referencing of stored web page portions referred to above.

Embodiments of the invention will now be described, by way
of example, and with reference to the accompanying

drawings, in which:

Figure 1 is a pictorial representation of the
terminology used to describe embodiments of the invention,

for ease of understanding:;

10

15

20

25

- 10 -

Figure 2 is a portion of a sample web page having a

context menu overlaid;
Figure 3 is a view of a leaf having a number of cards;
Figure 4 is a view of a sub-leaf;
Figure 5 is a view of a sample web page;

Figure 6 is a view f the Document Object Model (DOM)
of the web page of Figure 5;

- -Figure 7 is a flow diagram illustrating a process for

identifying meaningful elements from the DOM ;

Figure 8 shows how the DOM tree of Figure 7 may be

transversed when identifying meaningful elements;

Figure 9 is a flow diagram illustrating a process for

extractlng HTML code for identified meaningful elements;

’

Figure 10 is a screen print showing how an element may

be selected for saving; and

Figure 11 is a view of a repository/user interface

according to a second embodiment of the invention.

In order to understand the invention it is useful first to

review the technical framework underpinning it.

When a user of the Internet browses a web page using one
. of the available ‘web browsers’ such as Netscape
Communicator (NN) or MS Internet Explorer (IE), the page
they see on their screen is actually a rendition of a
stream of data presented to the browser in HTML format.
HTML (Hyper Text Markup Language), the language of the
world wide web, consists of combinations of tags,
-.attributes, such as size, and data/text, which are
interpreted by the browser to create a potentially

interactive display of information, that appears fairly

5

10

15

20

25

30

- 11 -

similar across all operating systems {(such as MS Windows,
MacOS or Unix) and different browsers. The whole of a web
.page need not come from the same server. HTML tags allow
the publisher of a web page to merge elements from
different sources. In one of its most complicated
manifestations, a web portal (such as my.yahoo.com), may
bring in elements from many third parties - news stories
from one company, stock prices from another and weather
“forecasts from yet another. They may also be selling part
of their page to an advertising server that constantly
changes the banner advert the user sees. Often, all of
this information 1s retrieved directly by thne user’'s
machine without passing through the publisher'’s server.

In other words, the web publisher can merely point the

user to the locations of the various elements of the page
and allow the user’s machine to obtain the information

directly.

The source of a page being viewed by the user is usually
dynamic in its content - for example, the front page of a
hewspaper’'s web site will be constantly changing.
Occasionally pages change so frequently that some items
seen on a page (such as a banner advertisement) may never
be seen again by the user if they do not respond to them
before the page is refreshed or changed; and even a
summary of news articles on a web portal will be changing
“such that an interesting news story may be difficult to

retrieve if it is not read at once.

HTML 4.01 is an SGML (Standard Generalised Mark Up
Language) application conforming to International Standard
IS0 8879 - Standard Generalized Markup Language. The full
“épecification is available from the World Wide Web
Consortium (W3C) and the detailed HTML 4.01 Specification
Recommendation at is to be found at

hetp://www.w3.org/TR/html401.

10

15

20

25

30

- 12 -

Within this specification of HTML 4.01 is the Document
Type Definition (“DTD”) that defines the markup language
within the SGML framework. This document will be used to
determine some of the rules followed by the embodiments to

be described.

ECMAScript (International Standard ISO/IEC 16262) is a
standardised scripting language based in large part on
Javascript (Netscape) and Jscript (Microsoft). A detailed

description of the language is published by ECMA in the

"ECMS-262 Ed. 3 standard at

http://www.ecma.ch/ecmal/stand/ecma—-262.htm.

CSS2 (or Cascading Style Sheets, level2) describes a style
sheet language which allows authors and users to attach
‘style’ (fonts, spacing, placement, size etc.) to
structured documents, including HTML documents and XML
(Extensible Mark Up Language) applications. The latest W3C
(World Wide Web Consortium) recommendation for CS52, may

be found at http://www.w3.org/TR/REC-CSS2.

The Document Object Model (DOM) Level 2 Specification

—-defines a platform- and language-neutral interface that

allows programs and scripts to dynamically access and
update the content, structure and style of documents. The
DOM Level 2 is made of a set of core interfaces to create
and manipulate the structure and content of a document,

and a set of optional modules containing specialised

“interfaces dedicated to XML, HTML , traversing the

document etc.

The DOM Level 2 Specification is believed to be close to a
recommendation stage and the latest version is published

at http://www.w3,.orgq/TR/DOM-Level -2 .

The felationship between the DOM and the underlying HTML

will be described later in the document.

10

15

20

25

30

- 13 -

The Extensible Markup Language (XML) is a subset of SGML

“that is completely described in the W3C recommendation of

February 1998. The recommendation can be found at

http://www.w3.0org/TR/199B/REC-xm1-19980210. XML is

supplemented by a raft of other specifications about how
the markup language is interpreted visually and how it can

be manipulated by scripting languages for example. Note

“that each XML document will be accompanied by a DTD (since

HTML 4.01 is as a specific case of XML it has its own DTD

as was mentioned earlier).

T, implement embodiments cf this inverntion familiarirw is

required also with SQL/relational databases, Web server,

and CGI/Perl or another interactive web server scripting

or programming interface.

The following description relates to an embodiment
developed to run on Microsoft’s Internet Explorer browser

IE (version 5) and Netscape's browser NN (release 6). It

uses the ability of browsers to be customised by an
application developer. Implementation in other browsers
(such as Opera) requires a different user interface but
the core mechanics of the underlying invention is the
same. Such browsers need to be compliant with the

standards described earlier.

This description relates to the latest major released
version of the Microsoft’s Internet Explorer web browser
Version 5 (IES) and the preview release of Netscape
Navigator 6 NN6. These browsers have many subtle
differences in their implementation of the standards
described often using slightly different names for
variables or functions. The embodiments to be déscribed

can be implemented in either browser; minor differences in

10

15

20

25

30

14

functionality exist that allow differing enhancements to

be applied in each environment.

Microsoft’s Internet Explorer browser (version 4 onwards)

--allows developers to add custom items to the context menu;

a pop-up menu that appears on the user’s screen when he
clicks the right mouse button. The context mouse button is
accessed slightly differently in the MacOs System. A
detailed explanation of the customisation of the context

menu is now available from the Microsoft Corporation at

“their web site

http://msdn.microsoft.com/workshop/browser/ext/tutorials/c

ontext.asp

Netscape Navigator 6 provides a lot more flexibility to
the developer to customise the browser but the process is
a little more involved. Almost any part of the NNé
interface can be customised by adding or modifying XUL
(XML based user interfage language) overlay file and
providing or modifying an associated script to the
applications “chrome”. A chrome in mozilla, the open
source browser development project of Netscape Corp, is a
;omplete front end, including all aspects of graphics,
layout and functionality. The concepts are explained at

http://mozilla.org/xpfe/xptoolkit/overlays.html and

http://mozilla.ora/xpfe/xptoolkit/popups.html.

An embodiment of the invention will now be described.

Referring now to Figure 1, some terminology will first be

described.

An Element of a web page is defined as an HTML tag, or a

meaningful collection of HTML tags, which can be saved.

-An element is likely to include the URL of an item of

interest to a user, rather than a copy of the item itself.

Examples of Elements include:

10

15

20

- 15 ~

A banner advert; a link; an image, with or without an
associated link; an MPEG video; an MP3 sound file; and a
table of images, which is an example of a meaningful
collection of elements being classed as an Element.

A Repository is defined as an online database in which

._bookmarked Elements are stored. Each user can have one or

more repositories.

A Card in the repository is defined as the visual
representation on screen of a bookmarked element. It is
customisable, but typically it looks like the original
‘element from the original web page, surrounded by a

rectangular border.

A Leaf in the repository is defined as the visual

representation on screen of a set of cards. It looks like

-a page from a scrapbookfwith an index tab attached.

A View is defined as one way of categorising a set of
some, or all, of the bookmarked elements in the Copyn
repository together with their attributes such as position
on screen, size, background colour etc. and the attributes
-6f ﬁhe leaves on which they are displayed. For any given
set of Elements, that is a Repository, there can be many
different Views. Views are made up of a collection of

Leaves.

-In the following description and claims, no distinction is

made between the visual representation on screen of cards
and leaves and the underlying mark-up data or its DOM
representation. This is because the visual representation
is the direct result of a web browser, or other such

computer program, interpreting the mark-up data

‘representation, or its DOM equivalent, of the card or leaf

10

15

20

25

30

- 16 -

and generating the resultant visual image and behaviour on
screen. Hence when it is stated that a card is movable on

screen, it means that the underlying mark-up language or

DOM equivalent is modified such that the web-browser, or

other program, displays the card in another position. In
addition it means that a user interface is provided, via
the browser or the like, such that the underlying mark-up,

or DOM equivalent can be manipulated.

~~Thus, in Figure 1, a browser window is shown generally at

10. Within the browser window 10 is shown a leaf 12 which
contains cards. One such card is shown at 14 although
typically a leaf would contain several cards. The card
contains- an element 16 which comprises a meaningful HTML

element as described above. The card also includes a space

"18 for inclusion of a user defined comment and domain name

and other text. The leaf is one of a number of leaves in
the repository and each leaf can be accessed by clicking
on a leaf index tab 20.'In the example shown, there are
three index tabs 20, labelled “Default”, “News Items” and
“"Hotels”. The leaf shown is the "“News Items” leaf and the
“Ner-Items" index tab 21 is shown highlighted. At the top
right of the screen is a wastebin icon 22 which allows the

user to remove a leaf and sent it to the wastebin.

There now follows a description of the interface whereby

“~the web user can save a part or the whole of a web page.

The client interface allows the web user to save an
element of a web page, or a link to the whole web page, to
the repository; to follow the element’s link immediately;

E-mail the element to someone else; and/or open the

"repository.

10

15

20

25

30

35

- 17 -

Different set-ups can be configured for different
situations. The interface allows the following options

for saving an element:

The element may be stored in a specified part of the

.. repository such as personal, private-shared, pooled or

public;

The element may be categorised in one or more customised
classifications as opposed to the default classification;
and

The element may be described using one or more different

—types of identification such as customised name, text of

1link, title of page, visual representation (including the
image portion of the element). Thus, the client interface
permits elements to be saved accordingly to a defined
degree of access, according to a defined categorisation

and according to a defined description.

Different types of clieﬁt interface can be used for
different situations and it is likely that more than one
may be available to the user in a given situation. Some
interfaces are only available to the user if the web
publisher has enabled them on their site, while other
Wintérfaces are always available to the web user by virtue
of the fact that they are registered system users. The
following description refers to the implementation of an
interface which does not require the web-publisher to

activate the service, that is easy to use, but is limited

__to the newest web-browsers. This interface uses extensions

to the context menu of the user’s browser, accessed in

Microsoft Windows by clicking the right mouse button when
the mouse is over the relevant element or page background.
In the example to be described it is assumed that the user

has previously downloaded and incorporated the extension

---into their browser. Turning now to Figure 2, an example

of the context menu is shown. The user has previously

registered with the service and has incorporated the

10

15

20

25

30

..18..

relevant proprietary extensions to her browser. Whenever

--she wants to save an element of a page (or indeed the

frame or page itself), she simply opens up the context
menu by using the right mouse button and then selects the

appropriate service option.

In Figure 2, the user has opened the homepage 30 of their

"Internet Service Provider. The context menu 32 is shown

overlying the homepage. The context menu includes two
extensions, add to Copyn 34 which adds an element to the
repository, and launch Copyn 36, which opens the user’s
repository. Other options may be added and customised to
the user’s requirements. In the example shown in Figure 2,
overlying the link about Euro 2000 tickets. It is
important to understand that if the user selects the add
to Copyn 34 extension it will be this HTML element or
collection of elements which will be stored in the
repository and not the éntire homepage of the homepage
URL.

When the user chooses either to add the element 34 or
launch the repository 36, the application checks for the

appropriate cookie that would provide the server with the

-username and password. If the cookie does not exist, then

the user is asked to log-in to the service, or to register
as a new user. A cookie is then saved on the user’s
machine that will identify her the next time she accesses
the service. 1In both cases the Element is saved in the

appropriate location in the repository, assuming it has

"not already been saved, and, if the user had selected the

*Launch Copyn’ option 36 her default repository is opened
in a new browser window. Using a single user account with
cookies means that it is very easy for the user to set up
Copyn for multiple browsers and machines, Thereby enabling

the sharing of the service between the office and home,

Tetc.

15

20

25

30

- 19 -

The Repository Interface will now be described.

The user can choose between a number of different
customisable web-based interfaces, via which the saved
elements can be viewed and manipulated. The two preferred

interfaces are:

A free-form “scrapbook”-like representation shown in
Figures 3 and 4, and a hierarchical tabular representation

shown in Figure 11 and which will be referred to later.

—“The 'user can toggle from one represehtétion to ancther and
Liie siwple, hierarchical tabular represenvation of rigure
11 is always available, for spring-~cleaning purposes, for
a quick overview of the contents of their repository, or

for any other reason.

—--Referring now to Figures 3 and 4, the repository interface
provides the user with a wide range of functionality,
including categorisation on screen display, a variety of
services and means for sharing and connecting with other

users.

-.Figures 3 and 4 are screen shots of the repository
interface as it is seen by a user. In this case the user
is displaying the interface in the Microsoft Internet
Explorer browser. The interface includes a default
categorisation 40 and a series of custom categorisations
42 which are defined by the user. In this case the user

--has defined four categories entitled, News Items,
Basingstoke, Jenny Photos and Humour. The default category

may be viewed as an in-tray for new elements saved.

The user of the system may be provided with a number of
default categories which can be changed, by renaming,

--deletion or addition of fresh categories.

Categories are hierarchical, that is, Cards can be placed

~in categories, sub-categories, sub-~-sub-categories, etc. a

(9]

10

15

20

25

30

- 20 -

“'single Card can be placed in many different categories or

sub-categories at the same time.

A given categorisation of a given set of stored elements
together with their attributes, such as position, size

etc. referred to as a “wiew” of those Cards. Each

---category 1is represented by a ‘Leaf’.

For example, imagine a set of “bookmarks” about individual
restaurants, in which each bookmark has been categorised
by the location, type of cuisine and price range of the

associated restaurant. Then three views of the bookmarks

-can -be set-up: a “location” view, a “type of cuisine” view

and a “price range” view.

The On-screen display of the illustrative “scrapbook”
interface represents any category (or sub-category) of

elements on screen by the relevant set of cards displayed

..on the appropriate leaf. The lay-out of cards on a leaf is

similar to the lay-out 6f items on a page in a scrapbook,
and the cards may be moved around by the user within a
leaf, like loose cuttings, using “drag-and-drop”. The
cards ‘remember’ their new positions. The user can move a

card from one leaf to another (thus re-categorising it),

--0or to a “rubbish-bin” (thus deleting it), using “drag-and-

drop”. The user can ‘resize’ any card, with the card’s
contents being scaled or wrapped, accordingly, inside the
card’s border. Within the border of any card, the user can
place their own comments, and/or other information which
they select from a standard list of fields, such as date
bookmarked, source page, etc. The user can toggle between

different views of a given set of cards.

A number of services can also be provided. The user can
upload and merge existing “bookmark/favorite” collections

from their browser(s) into the repository at any time.

"This is particularly useful when a user first registers

for the service. The bookmarks stored in the repository

10

15

20

25

21

can be clicked through just as they would be on the
original referring page. One current exception is where

clicking the link would execute a javascript program. The

.user is kept informed about bookmarked elements that have

expired/gone stale, or whose content has changed.

Management information is available to the user, for
example: listing those bookmarks which have not been
clicked through for longer than a given length of time; or
listing those bookmarks which are most often accessed.

The user can send any one or more of their bookmarked
glemz-4s elither irndividually or 2z 2 collecticn, *o
anyone else who has Internet access. This can be by email
or as a message within the system. The sender can then

categorise those particular bookmarks as having been e-

-mailed to that particular recipient; and both sender and

recipient have the option of whether the sent bookmarks

are linked or copied.

[4

Various sharing and collaboration facilities are

available. A user can create a “public” repository which,

.at the owner’s option, any other registered user can read

from or add to. This facility allows users to create
different types of repository ranging from a “free-for-
all” bulletin board to a “read-only” information site such
as restaurant guide with links to restaurant web sites

together with the repository owner'’s comments.

A user can authorise other, for example specially invited
users, to have full access and use of a “pooled”
repository. This service is particularly useful to clubs,
societies, and the like where members share a common

interest.

A user such as a school, university or corporation, can
create a “private-shared” repository, for example running
on their own web/database server, which enables students

and/or staff to use the functionality of the system to

22

collaborate on web-based research activities. A variety
" of options are available giving different individual users

different privileges such as read, write, modify, etc.

In the Figure 3 example, the leaf 40 is the default leaf
which is shown highlighted. The leaf contains seven cards
44, 46, 48, 50, 52, 54 and 56 and the waste bin 46. The
“'cards shown are selected to show examples of some of the
different types of meaningful HTML elements which can be
saved. Element 44 is an HTML DIV containing a link
element, a DIV element divides a page into a number of
logical sections. Here, an image has a brief description
of the story and clicking on the image or the link will
“take the user to the linked web site as if they have

clicked on the original web page.

Element 46 is a simple text link. Element 48 is a 2x2
table of advertisements. The bottom left and top right 58,
60 of which have links, identified by their bold borders.

Element 50 comprises text extracted from a linked news
headline; the user chose to keep the text but drop the
link. Element 52 1s a banner advertisement in which an

image is embedded in a link element.

-Element 54 combines an image map and an image. The full
map functionality is retained, for example, if the user
clicks on the "Lawn and Patio” tab 62 they will be taken
to that section of the amazon.com web site. Element 56 is
also a DIV element comprising a link and some text, but
which has been resized; the content has automatically

~obtained scrollbars to allow all of the content to be

seen.

The user can move these seven cards around the screen,
and resize them. The cards remember their size and

location, so that when the user next returns to the

i

15

20

25

- 23 ~

repository, the lay-out of the view is preserved from the

previous visit.

Figure 4 shows a leaf from the News Item Category of

“Figure 3. It can be seen that the New Item Category

comprises seven sub categories 64, identified as Asia,
America, Africa, Europe, Sport, Angus Deayton and Local.
Here the Europe sub-category 66 has been selected to

display a leaf containing five cards 68. A waste bin 40 is

also displayed in the leaf.

The marner in which the embodiments described operated

will now be described.

An understanding of the relationship between the HTML and

its DOM representation within the browser, and hence its

—availability to the browser scripting language, is

essential to comprehend the manner of operation and will

be described with reference to a simple example.

There are many subtle, and some significant, differences

in the way that IE and NN turn the raw HTML of a web page

---inte objects which can be accessed and modified by

scripts, the DOM. However, the embodiments discussed rely
almost exclusively on functionality common to both
browsers, only deviating from this when a particular
aspect of one browser or another offers significant

implementation efficiency.

Figure 5 shows a simple web page comprised of some images

and text. It is similar to the Card 40 shown in Figure 3.
The first line (‘'This is my Table:’) appears in a slightly
larger font and although not visible in the drawing, in

red. Below this text is a 2x2 table. The first column

---comprises 2 cells showing images, the second column

includes images and text. Further subtleties can be seen

in that the first row entries are aligned at the top of

10

15

20

25

..... <TD>

24

the table cells and the bottom row entries are aligned

.'élong the bottom.

The raw HTML used by the browser to construct this page is

as follows:

<HTML>

-- <HEAD>

<TITLE>An HTML/DOM Illustration</TITLE>
</HEAD>
<BODY bgcolor="beige">

This is my

table:

<TABLE border="2" cellpadding="2" bordercolor="darkblue">
<TR valign="top">

<TD>

-

</TD>
<TD>
 Apricots are
tasty
</TD>
</TR>

<TR valign="bottom">

</TD>

<TD>

10

15

20

25

30

- 25 -

Bananas are better! <IMG

SRC="/images/USWEST.gif">
</TD>
</TR>
</TABLE>
</BODY>

</HTML>

“Figure 6 is a summary of the DOM representation of the

page. The picture only shows a small subset of the
information availabie in the DOM aLCUL the ContenLl <L ..o

page. Specifically it only shows the “nodeType”
(1=NODE_ELEMENT, 3=NODE_TEXT), “tagName”, number of

fchildNodes", the non-default “attributes” of each node

and the “nodeValue” of any text nodes.

It can be seen that the DOM representation mirrors the
hierarchy of the raw HTML that was used to create the
page. Each node has one parentNode and each element node

can have zero, one or more childNodes.

The DOM representation of the'page can be interrogated
dynamically aﬁd, within constraints, can be modified
without editing the underlying HTML. For example the
position of elements on the screen can be changed by

modifying some of their attributes, or the value of text

--Strings changed. 1In the above example, if we changed the

value of
document .getElementsByTagName (“A") [0] .childNodes{1l].nodeValue
to “Oranges are tasty” our web-page would be modified

onscreen such that it no longer tecld us that “Apricots are

tasty’” but that “Oranges are tasty”.

Pages can be created on the fly, by a script manipulating

the DOM directly without the need for any raw HTML, other

5

15

20

25

- 26 -

_than the code of the script itself, being read by the

browser.

There now follows a description of manner by which the

user saves elements to the repository.

The operation of a user saving elements to the repository
“"may be broken down into three main steps: setup and

installation; finding the meaningful elements; and

extracting the HTML for the meaningful elements found and

returning it to the server.

The set up and installation requires customisation of the

~browser context menu and installation on a user machine.

The finding of the meaningful elements can be subdivided
into the steps of: using the context menu as an interface
with the users mouse over a node of interest; identifying
a node supplied by the context menu; traversing the tree
—to look for collections,of meaningful elements; finding
related nodes if a given node requires a related node; and

creating meaning where there is none.

The HTML extraction and return to the server can be
subdivided into the steps of extracting the raw-HTML or
--DOM sub-tree from selected nodes; passing HTML data to a

new window; selection by a user; and storage by the

server.
These three main steps will now be described in turn.

SET UP AND INSTALLATION

To enable the customisation of the browser context menu,

the following operations are necessary:

In Internet Explorer the user adds a new key in the

windows registry under

5

10

15

20

- 27 -

HKEY_CURRENT_USER\Software\Microsoft\Internet
Explorer\MenuExt\”My Menu Text”

Where “My Menu Text” is the text required for the new

context menu entry.

The default value of the key is set to the URL of the page
containing the script the developer wishes to execute if

the user selects this menu entry.

The menu entry can be restricted only to appear in Certain
circumstances, for example only if the mouse is over an
image. This is achieved by creating a binary value called

Contexts under the key and setting its value accordingly.

In NN6, a new XUL overlay file, for example,
navigatorCopynOverlay.xul is created which defines a new
menu item as part of the context popup menu which can be

referenced by setting the id of the <popup> element

_appropriately, namely <popup id="context”>. An ‘oncommand’

value is attached to the menu item with the name of the
script function to be called and the application is told
where it can find the script via a <html:script> tag.
Finally, the new overlay file is included in the global
overlay file, in this case navigatorOverlay.xul, by adding

the following line

<?xul-overlay

href="chrome: [path] /navigatorCopynOverlay.xul?>

Optionally, submenu items can be added to the NN6 context
menu and their appearance made conditional on the type of
node which the mouse pointer was over when the context

menu was activated.

10

15

20

25

30

- 28 -
Installation is relatively simple.

In order to extend the IE browser a small registry file is
created which the user opens from the system web site.
Doing so, having given the appropriate permission, will

add the key to the users registry.

To install the extensions in NN6 requires the user to be
presented with a signed script. A signed script is a
normal script that has a digital signature that confirms

the authenticity of the script. A signed script can

-request special privileges, not usually available to a

browser script, such as the ability to modify the browser
or access files on the user’s system. If the user gives
the script the appropriate permission, the modifications

described above can be installed.

The step of finding the meaningful elements, and the
various sub-steps will be described with reference to

<

Figure 7.

To select an element to be added to the repositories, the

user moves her mouse to that element and then activates

'the_context menu over the item of interest. This is shown

at step 100. Thus, the context menu is used as an
interface with the user’s mouse over the node of interest.
The user can now select the add element option (34 in Fig.
2) to add an element to the repository. At step 102, a
handle to the Node is returned to the script from the DOM

.-over which the mouse was when the context menu appears.

In IE this Node can be accessed from
‘parentwin.event.srcElement’ and in NN6 from
‘document.popupNode’ . These are both the same type in the
DOM, an HTML Node. This Node will be referred to as
‘myNode’ for the purposes of the following.

Identification of Node supplied by Context Menu

- 29 -

At step 104, the script identifies the type of myNode (via
myNode .nodeType) . The options of interest in the HTML
"implementation are typically types 1 and 3. Type 1 is an
ELEMENT_NODE which means that the node received is an HTML
5 Element, and Type 3, which is a TEXT_NODE. Text nodes
hold all the text data outside the HTML'<’ and '>’' tag
brackets. Often text nodes are nothing more than the
carriage returns between two lines in an HTML file but
-“more interestingly this is where the text shown on the
10 screen can be obtained from the DOM. In the DOM
representation of Figure 6 a large number of TEXT NODES
consisiing of carrlage retuinse and white spale wilc

omitted for simplicity.

Element nodes can be further distinguished by their
15 tagNames, as can be seen from Figure 6. Different useful
data can be obtained from each tag type. For example the
source of an image file can be obtained from the ‘SRC’
attribute of an tag or the row and column data from

the childNodes of a <TABLE> tag.

20 At step 106, myNode is examined to determine whether it is
a meaningful element according to the defined rules. If it
is, at step 108 the element is added to the list of

meaningful elements.

=“The ‘script now traverses up and down the Node tree,

25 looking for meaningful collections of elements by looking
for meaningful ancestors and descendants. For example
from a link (<A>) the script looks at all the childNodes,
and their childNodes and so on to search for text nodes or
image tags that form part of the link. The script then

30 "looks up at the parentNode, and its parentNode etc. until
it reaches the document <BODY> which is the highest level
node that could be of interest in this context, noting on

the way if the link is part of a <TABLE>, <FORM>, <DIV>,

- 30 -

 node etc., each of which could represent the common

ancestor of a meaningful collection of elements.

In Figure 7, at step 110 the process first looks for

..childNodes. If there are, the handle of each childNode is
in turn passed to the script at step 112 and steps 102 to
110 are repeated for each childNode in turn. The process
at step 114 then looks to see whether the parentElement of
the current element is the BODY element. If it is not, at
step 116, the handle of the parent element is passed to

--the ‘script ana steps 102 to 114 are repeated. If the
answer at ste§ 114 is yes, the process asks whether it is
policy to capture BODY elements at step 118. If yes, the
BODY element is added to the list of meaningful elements
at step 120. In any event, the script is now ended at step
122.

Looking at this process in more detail, and referring to
Figure 8, consider the example HTML page and the DOM at
Figure 6. If the user activates the context menu over the
image or text in the top right hand cell of the table,
myNode will refer to the Node second from the left in the
“Ppenultimate row of the diagram shade node 130. This is an
Element Node representing an anchor tag ('‘'<A>’) and its
descendants represent a meaningful collection element so
this node must be noted. The Node tree is now traversed

looking for meaningful descendants and ancestors.

---First, the childNodes of myNode are located at and 2 Nodes
132, 334 are obtained, shown shaded in Figure 8. These
nodes are Element Node 132 for an , another
meaningful element to be noted, and a Text Node 134
stating that ‘Apricots are tasty’ which is another
meaningful element, despite the fact that technically this

"Node is not an element. The manner is which this type of

Node is dealt with will be discussed later. Again, this

15

20

30

- 31 -

element is noted. Three meaningful elements are now captured.

“The search is then reversed and the parentNode 136 of

myNode looked at. This is an Element Node for a Table
Data (‘<TD>’) tag representing a single cell in our table.
For the time being this is considered not to be a
meaningful element as will be discussed. This Node'’s
parentNode 138 is then examined to obtain an Element Node
138 for a Table Row ('<TR>') tag. Again this is not

considered to be a meaningful element.

The nevt parantNeds 140 is examined to obtain zn Flem=nt
Node for the Table (‘'<TABLE>') tag that represents the

whole of our 2x2 table. This represents a meaningful

collection of elements, the whole table, and is noted.
The parentNode of the TABLE is the BODY 142 of the whole
document which again represents a meaningful collection of

elements and also a stopping point for our Node traversal.

Capturing the body of the page as represented by the BODY

element is different to bookmarking the location of the
page. For example, the first page of a newspaper will
change from day to day and so a user who wishes to capture
the front page on a special occasion will actually need to
capture the body of the document as opposed to the URL of
the page.

In practice this Element and its descendants may not be
captured as the amount of data inveolved may be quite
large. 1If it is decided to capture it then it cannot be
saved ‘as-is’ and its content must be put into a <DIV>
Element which can be stored and retrieved from the
Aatabase and displayed within the confines of another
document. The manner in which a node is handled will again
be discussed later. DIV and SPAN elements can be used to
create freely positional “sub-pages”. The content in a DIV

or SPAN element can be set to move with its parent

- - 32 -

Element, hidden or made visible and even occasionally

resized in proportion to the DIV or SPAN element.

A rule set is used to determine and identify ‘meaningful’
Nodes, the decisions used for when to stop searching up or

5 "'down and special treatment of Nodes, such as for the Body
Element above. This rule set is based on the DTD for HTML
with as little overruling as possible - this means that
keeping the system up to date is more straightforward as
the specification of HTML changes, and also provides an

10 approach to generalising the technique described to other

.“ﬁarkup languages that come with their own DTDs.

For some types of nodes the script must also find
associated or related nodes or data. A second set of rules
is used to facilitate this. For example if a user
15 activates the context menu over an image map (‘<MAP>') the
“script must find the image that uses theé map; the
collection of images in the document can be obtained from
the array of image Nodeé held in ‘document.images’ within
the DOM. MAP elements can also be applied to OBJECT and
20 INPUT elements. These must also be searched to find the
appropriate element to be matched to therMAP. It is then
m; simble matter to scan through these to find the images,
objects and inputs using an image map and in particular
the one using the image map on which the mouse was placed.
25 In another situation style sheets/style definitions may be
needed to interpret the class attributes of nodes. This
may be done in one of two ways: the script could locate
and load the appropriate style sheets and cssRules or the
script could record the non-default style settings of the
30 node itself. It is preferred to extract the style
information of each node independently but this is not

essential.

Alternatively, global style settings can be captured by a

straightforward DOM function call.

10

15

20

25

30

- 33 -

In some cases, non-meaningful elements need special

- treatment to make them meaningful.

Farlier it was stated that ‘<TD>' and ‘<TR>' tags did not
represent meaningful collections of elements. 1In
isolation they do not - without a ‘<TABLE>' tag -

represent well formed HTML. To the user, however, it is

“‘appealing to select rows from tables or groups of adjacent

cells. It is made possible to select combinations of
nodes which share a common ancestor node type. For
example, table data or table rows can be lifted from the
table. 1in this situaticn the script would Ccreaie a hich
ancestor of the appropriate type, possibly using the
"forﬁatting attributes of the actual table from which they
are being selectively extracted. A third set of rules is

used to facilitate this which will be referred to later.

A list of the meaningful Elements and common ancestors of

_meaningful collections of Elements has now been obtained.

The third stage of the process is to extract the HTML for
these meaningful Elements and Returning it to the server.
Having drawn up a list of meaningful Elements, or

collections of Elements, the script now extracts the

__required data from the DOM for each of them in turn. This

data will then be passed to a new window before being sent

to the server. This process is illustrated in Figure 9.

There is a choice between extracting the raw-HTML, or the

DOM sub-tree from Selected Nodes.

..The HTML represented by the Elements and their descendants

can be recreated or copies of the relevant sub-trees of
the DOM itself copied. The choice in practice depends on
the performance of the different browsers at the

extraction of the data or copying the DOM subtrees.

10

20

25

30

34

If the implied raw HTML is created, a number of techniques
may be used. It must be noted that this HTML may have been
created by a script on the publishers web site and may not

represent the actual HTML passed from the web site’s

--Server. Alternative approaches will be described later.

—-

Referring back to Figure 8 and commencing at node 130
which relates to a link containing an image and the text
‘Apricots are tasty’. The whole of the process must be

repeated for each meaningful Element in the list.

Referring to Figure 9, a blank string “myHTML” is created
at step 150. At step 152 a check is made whether the
element is of the type ELEMENT_NODE. If not, a check is
made at step 154 to determine whether the element is of
the type TEXT_NODE. If, at the step 152 the element is
determined to be an ELEMENT_NODE, at step 156 the opening
tag ("<A %, in the example being considered) from the
tagName of the Node (myNode) is added and a list of the
attributes checked for the Element from

‘myNode.attributes’ and for any that have non-blank values
add them to the myHTML string. In the example, myHTML now
reads “<a href=’/test.html’”. The same exercise is
repeated for any style settings that have non-default
values by scanning through the ‘myNode.style’ array. In
the example there are no style settings so myHTML is

unchanged. The opening tag (myHTML=“<A

‘href=’/test.html’>") is then closed. Thus, in Figure 9

step 156 is executed in the order of the opening HTML <and
name tag, non-blank attributes, mnon-blank style settings
and finally the closing angle bracket>. In IE the list of
attributes is very long and goes well beyond the-list of

attributes specified in DOM2. The list is thus restricted

--to the list of attributes applicable to each Element type

- this can be obtained from the DTD. For the sake of

efficiency the search through the style setting may be

10

15

20

25

30

..restricted to the core values ‘relating to size, position

and colours.

We now recursively repeat the exercise for each childNode,
and in turn for each of their childNodes - including non-

meaningful Elements - and their childNodes etc. This is

---shown at step 158 in Figure 9 at which it is determined

whether there are any childNodes. If there are, at step
160, the handle of each childNode is passed in turn to the
script and the process is repeated recursively for each
childNode. The result is then appended to my HTML.

feferring Lo tie Figure 8 exampie, the I[irst node

“"encountered is the IMG element. Repeating the above

exercise of extracting attributes and styles, myHTML=“"” is created. This node has no
childNodes and so a check is made to see if a end-tag is
appropriate for this type of Element. In this case it is
not, as, according to the DTD for HTML, elements do
unot'héve end-tags so the local myHTML is returned back to
the parent node. For the link node, myHTML now reads =“”. 1In Figure
9, the step of looking for an end tag is shown at step

162. If present, the end tag is applied to myHTML at step

_ 164, If not present, or after application of the endtag,

the finished script is returned to myHTML at step 166.

The next childNode of the link is a text Node from which
is extracted the nodeValue which is returned to the

parentNode. For the example link node, myHTML now reads

-.=“Apricots

are tasty”. There are no more childNodes so an end-tag is
added to myHTML, if appropriate for this type of Element,
to get the final result of

myHTML="<IMG

src=' /image/etfront’ >Apricots are tasty"

5

10

15

20

25

30

35

- 36 -

The process is summarised by the following pseudo code.

Function extractHTML (myNode) {
create empty string myHTML=""
1f (myNode is an Element Node (i.e.
myNode .nodeType==1)) do {
myHTML = myHTML+"<”+myNode.tagName
for each member of myNode.attributes do {

If specific attribute is non-default myHTML =

--myHTML + " [attribute name]={attribute value]” or

[attribute name] for boolean attributes.

!

if (any member of myNode.style is non-default)
myHTML = myHTML + “STYLE=" “

for each member of myNode.style do {

"‘ If specific style is non-default myHTML = myHTML +

“[style name):[style value];”

}

if (any member of rmyNode.style is non-default)
myHTML = myHTML + » ' %

myHTML = myHTML+">"

if (number of childNodes (i.e.
myNode.childNodes.length) > 0) do{

for each member of myNode.childNodes do {
myHTML = myHTML + extractHTML(childNode of

myNode)

}

if the tagName of myNode requires closing tag
myHTML = myHTML+ “</“+myNode.tagName+">"
}

else if (myNode is Text Node (i.e.

..myNode.nodeType==1)} do {

myHTML = myHTML + myNode.nodeValue

}
return myHTML;

10

15

20

39

- 37 -

" This is represented by Figure 9.

This description has glossed over one essential task the
script must perform on the extracted HTML (or DOM subtree)

before it is passed to the new window. Many websites

reference images and links etc. relative to a base URI,

often the domain of the page being viewed. In the example
the images SRC attribute locks like the following
SRC='/image/{filename}’ - this reference is relative to
the domain of the publisher’s server. If the user

attempted to display this image from the repository site

_.die would not see the 1mage as the repository will not have

a copy of the image file. What the script therefore does
is replace SRC='/image/{filename}’ with
SRC='http://{domain_name}/image/{filename}’. This is
easily done as the DOM subtree is traversed. Each time

an attribute is found that may need changing, such as

---'SRC' - for , ‘HREF' for <A>, a few string operations

are performed that convért the relative URI to an absolute
URI. A full list of attributes whose values are URI's can
be obtained from the DTD. The process that must be
executed to convert relative to absolute URI’s must

satisfy the following Request for Comment rfc 1808 which

“can be found at www.ietf.org/rfc/rfcl808.txt. If the base

URI in this example was ‘www.domain.com’ the final HTML to

be captured would then read

nryHTML=
“<IMG

src=http://'www.domain.com/image/etfront’ >Apricots are

tasty"
Instead of

myHTML="<IMG

s£c=’/image/etfront'>Apricots are tasty"

10

15

20

25

30

- 38 -

There is now a list of meaningful elements or the common

ancestor that makes a collection of Elements meaningful,

..together with the HTML that represents each of them (and

their descendents) in the DOM.

Capturing the Javascript associated with an “HREF” or
“event” is theoretically possible but may cause

unpredictable behaviour. The scripts in a page can be

---obtained from an array of script elements from the DOM.

This array could be recreated in the HTML being saved,
thereby ensuring that the script attached to the “HREF” or
“event” is available when the repository displays the
saved element. Variable and function names in these
scripts may clash with names from other sites and may well
refer to elements on the original web site that are no
longer available once the element has been saved out of
context. The ability to save the scripts associated with
element attributes (including mouse and keyboard events)

may therefore be disabled.

}he.HTML data is then passed to a new window (or a new
layer on the same page). The script, having identified the
Nodes representing the common ancestor of each meaningful
collection of elements, or having created a virtual

ancestor where such a node does not exist, takes the HTML

_represented by each Node and its descendants and passes it

as an array of data to a new window it creates. The HTML
passed to the new window is written into a series of
layers, or '<DIV>’ elements all of which are hidden from
view apart from the default option, which is the HTML
corresponding to the actual element over which the context

menu was activated.

In its simplest manifestation the layers are created by

the following type of script (in pseudo code):

for (i=1 to number of meaningful elements) do {

10

15

20

- 30 -~

write the following HTML to our new window
“<DIV ID='mylayer[i]’ STYLE='visibility:hidden'>
myHTMLArray(i] </DIV>"
}

If our default option was element no. 2 (for example) we

would then modify the style as follows:

document.getElementById(‘mylLayer2’) .style.visibility='visi
ble’

T Osirs Thnen Makes Bis Selecuicin. G thiszs new wWindow 13 o
FORM, with a pulldown menu of options, a <SELECT> tag,
corresponding to each of the meaningful collection of
elements passed from the main window. As the user chooses
different options from the menu the corresponding layer is

made visible and the others hidden. This is done by

switching the style visibility setting of the DIV to

‘visible’ and ‘hidden’ accordingly.

This is illustrated in Figure 10 which shows a screen shot
of a Window 200 in which the selected area to be saved 202
is displayed. The user selects from a drop down menu 204
what he or she wants to save, for example the entire
table, an image or a link and clicks the “add to Copyn”
button 206 to save the selection to the repository. A
reset button 208 is provided to enable a selection to be

cancelled.

When the user has finalised his choice {in our example
between the text, ‘Apricots are tasty’, the image ‘Love a
Book’, the link, which includes the text, the image and a
target for the link, and the whole 2x2 table} he clicks on

a button to ‘post’ the results from the form to a web

“server program (for example a cgi script written in Perl)

running on the repository server. Posting is one of the

methods of returning data to the server from an HTML form.

wn

10

15

20

25

’
h)

40

Until now there has been no interaction with the server.

Only the selected HTML is passed, together with other

“useful pieces of information such as the URL of the page

from which it was obtained, the size of any image files
(only possible in IE at present) etc. The exact choice of
data to be returned will depend on customer demand but

this data is generally obtained by a limited number of

methods including the following:

Extracting HTML for selected elements on the page; the
Height and Width of the element as currently rendered by
the browser (this is obtained from the offsetHeight and
offsetWidth fields) which is useful for determining the
size of the element for display on the repository;
Obtaining browser or system data from data made available
from the DOM (e.g. type of browser or operating system) ;
Information about the web site and domain (such as the URL

of the page); and Date and Time data.

L4

--.The .server then stores the data as follows.

The server script first checks for a ‘username’ cookie. If
it does not find one the user is invited to log-in or
register. The user details are confirmed with, or stored
in, a database table on the server. This use of cookies

for identifying users and validation of passwords etc. is

"common practice online and will not be described any

further.

Once the user has been validated, the server script takes
the data provided by the form and adds it to the user’s

repository. An SQL query may be made to ensure that the

‘data is not a repeat of content already in the users

repository.

The data is stored in the ‘default’ category determined by

the user’s predefined preferences.

u

20

25

30

- 41 -

Once all this has been done, the content of the ‘new
window' is replaced with a message from the server. A
confirmation message, showing what has been saved, 1is
displayed in the new window. After a short preset period

of time, for example 5 seconds, the new window closes

.itself.

The HTML representing the user’s selected generic Element
has now been passed to his repository for subsequent

retrieval.

The following representation of the database and its
associated tables and data allows the invention to be
recreated but may not necessarily the most efficient
implementation which could be developed. Sufficient
information about the requirements is, however, provided

to allow a more sophisticated database to be developed.

The information set out below relates only to the
implementation of the invention and not to other data and

services that may be useful from a commercial point of

-.view. For example, in a commercial implementation we may

seek further user data beyond the Name and Password (e.g.
e-mail address etc.). Implementation of such additional
features is straightforward for one of ordinary skill in

the art.

-The core data will be split into 9 data tables (more

tables may be added later depending on business
requirements). Taking each data table in turn, the
purpose of each table and the primary fields required is

as follows:

" User Data Table

- 42 -

This captures information about each user and basic

preference data such as their default group and default

repository.

User Name

Name by which user identifies himself

User Password

Password user selects to control access to

account

Default Group = Groups
Data {(Unique Id.}

Default collaborative Group to which user

belongs (may be blank)

Default Repository =
Repository Data {Unique
Id.}

Default repository of saved elements - each

user has one or more repositories.

Unicue Id.

System generated identifier for User.

User Data Table

- 43 -

Element Data Table

This is the core data saved by the client interface

described.

nothing about how this data is

It holds the HTML,

domain details etc. but

to be displayed on the

5 repository interface.

Raw HTML

HTML extracted and saved by Client Interface

Source Domain Name

Domain name of site from which the raw HTML

was taken

Source Page URL

URL of the web site from which the raw HTML

was taken

| Date/Time Created

Date/Time the element was saved

Date/Time last visited

Date/Time the element was last clicked on (if

‘a link)

Owner Repository =

Repository Data {Unique
Id.}

Repository within which the element is saved.
Elements can exist within more than one View

for the same repository.

Copy of Me = Element Data
{Unique Id.)}

Location of a copy of the element (created if
user sends copy of part of repository to

another user for example). This copy of the

Element may need updating if the underlying
element changes. This copy can have copies of

its own, etc.

Unique Id.

System generated identifier for Element.

Element Data Table

Card Data Table

- 44 -

The information in this table captures information about

the displaYI

formatting and position of the Element Data.

The card has information about which leaf it is displayed

“on. Any given Element can be associated with several

different Cards.

Associated Element =

Element Data {Unique Id.}

Location of element to be displayed on this

card

Position/Size etc.

Examples of customisation options specific to
each card such as location on screen

the leaf)

(within

Background Colour etc.

Examples of customisation options that can be
common to many cards - these can be

overwritten by, or inherited from, Owner Leaf.

Comment /Description Text

etc. e

Examples of text fields the user can add, or
modify to describe or comment on the

card/element.

Owner Leaf = Leaf Data

{Unigque 1Id.}

Identifier for the Leaf of which this card is

a part.

Date/Time last visited

Date/Time the element was last clicked on (if

a link) - specific to this card.

Unique Id.

System generated identifier for Card.

Card Data Table

45

--Leaf Data Table

The User's screen, in a given view, is split into a number
of Leaves navigable by tabs, similar td a spreadsheet in
MS Excel and other products. Each Leaf holds information
about its own display as well as default values for any
Cards plaéed in it. In essence Leaves can be used to

"categorise and classify Cards and hence Elements.

Owner View = View Data The View of which this Leaf is a part.
_{Unique Id.} - _
CLed L pivis This a descriptive title used for tah labv=l.
Reference to View = View In order to accommodate sub~-Leaves a leaf can
Data (Unique ID/} include a pointer to a View - this View and

its Leaves will appear within this Leaf (see

Figure 4 for illustration).

Background colour, text Customisation options for the leaf that drive

font, border type etc. its display. Some settings may be inherited
from default values at View level.

Background colour, text Default.settings for customisation settings

font, border type etc. for cards that appear within it.

Unigque Id. System generated identifier for Leaf

Leaf Data Table

View Data Table

- 46 -

A View is made up of a collection of Leaves and hence

cards and in turn Elements. Overall View settings can

..easily be copied from one Repository to another.

View Name (descriptive)

This a descriptive title used by the User to
identify the view (we may also have a short

form title for use on menu options)

Owner Repository =
Repository. _Data {Unique
Id.}

This is the Repository to which this view

applies.

‘Overall customisation
data (e.g. page size,

type of waste-bin etc.)

Some customisation data exists at View level -
this includes location of waste-bin, position
of leaf tabs, default values for Leaf

settings.

Unique Id.

System generated identifier for View

Repository Data

View Data Table

r

Table

Each user or collaborative Group of Users has one or more

repositories of data. The identification and

administrative data is held in this table together with

the default View associated with the Repository.

Owner User/Group= User
Data {Unique Id.}, Group
Data {Unique Id.)

Each Repository has an owner/administrator
responsible for it. This can be a single User

Oor a Group.

Default View = View Data

{Unique Id.}

Each Repository has a default View.

Unique Id.

System generated identifier for Repository

Repository Data Table

- 47 -

Groups Data Table

Users can belong to collaborative Groups that can access

shared repositories - this captures information

identifying the Group and its default Repository.

Universal groups allow users to make their
..Repositories/Views available to everyone, e.g. for public

read access.

Group Name (descriptive) Descriptive title for the Group (may also have

shorter version for menu labels) :

Owner User = User Data { Administrator/Owner for the Group - this User
T, o is responsible for Repositories {&nd hence

Views etc.) owned by the Group.

Default Repository = Default Repository for the Group
Repository Data { Unique
1d.)
Unique Id. System generated identifier for Group
- Groups Data Table
UserGroup Data Table
This table maps Users to Groups. It is used to determine
which Users are members of which Groups.
User = Use}mDaté {Unique Name of User belonging to Group
Id.}
Group = Groups Data Group identifier
{Unique Id.)}
Unique Id. System generated identifier for UserGroup
linkage

UserGroup Data Table

- 48 -

Permissions Data Table
..This table is used to restrict and manage access privilege
to various data in other tables. For example it can be

used to limit access to a Repository or view.

Associated Data = {Unique Unique Id. From any of the following above
Id.} data tables : Element, Card, Leaf, Vieuw,

- Repository, or Group.

Associated Table = Table Name of data table to the which the above

Name/Data Type identifier refers.

Recipient User/Group = User or Group to which this permission relates
{Unigque Id.}

Crantor = {Unique I4d.)} Usexr or Group that owns this permission.

Type of Permission Whether the permission relates to ability to

read, modify, create, delete, administer etc.

Unique Id. System generated identifier for Permission

Permissions Data Table

The Permissions data table is very important. The data can

..be used as follows:

A Group owner may grant the right to administer Group
membership to another User. 1In this case the Group owner
is the Permission Grantor, the second member is the
Recipient User, the Type of Permission is administration,
--the -Associated Data Table is the Group data table and
Associated Data is the Group to which the second user 1is

being given the permission.

A User may grant universal read access to a specific View
of a specific Repository. In this case the Permission is
"'set for the View - the Grantor is the User, the Type of
Permission is read access, the Recipient Group is the
Universal Group and the Associated Data is the View. A
5 Permission of the Repository is created with the same

settings. The repository cannot be ‘looked’ at other than

10

15

20

- 49 -

via a View and so granting this Repository Permission does

not allow access to other views.

A Group may choose to organise itself with each User

having full access to one Leaf each and read access to all
the other Leaves. This can easily be achieved by setting

the appropriate permissions on each Leaf.

The database also stores a copy of the various DTDs used

_to define the syntax of HTML markup constructs. These

will be the first of many DTDs to be captured in the
Gatabase and will fcrm the dataset from which the
rulesets, required to capture and display broader XML

elements, can be developed and recorded.

--The -database used may be a standard SQL database or other

type of relational database, which the web-server accesses
via Perl/CGI, or another interface mechanism between the

web server and the database.

This data structure set out above allows groups, views,

“leaves, cards, permissions etc. to be customised.

The repository user interface will now be described in

greater detail.

There are two aspects to the Repository User Interface,

-<(“RUI”) the representation of the data in a relational

database as described and the Free-form visual user

interface, which is one implementation described.

Before describing the mechanics of how the visual

interface works it is useful to give a brief description

..0of how the database structure ties in to the practical use

of the system:

5

15

20

25

30

- 50 -
“Users” can belong any number of collaborative “Groups”

(including none).

The administrator of a group manages the repository access

privilege of group members and the administrator can also

allow universal read access to a repository.

Users and Groups can have one or more Repositories.
Repositories can have more than one View. The user can
switch views at any time by choosing the desired view from

a drop down menu.

--Views are constructed of a customisable set of Leaves. The

number of Leaves can vary, as well as their layout on the
screen. In the default layout, the Leaves overlap each
other with non-overlapping tabs at the top to allow the
user to switch from leaf to leaf. Leaves can haQe

different background colours or images. Leaves provide

“"default customisation parameters to the Cards displayed on

them. A Leaf tab can point to a View to be displayed
completely within the Leaf to form a type of sub-Leaf.
This allows the type of multi-level leaf structure

illustrated in Figure 4.

—Leaves display a number of customisable Cards. Each card

can be customised or can inherit itsvsettings from the
default values stored at Leaf level. Customisation
includes background colour, including transparent or even
a background image, border type, whether a comment field

should be displayed etc. Each card displays one Element

“and can have comments/descriptions attached, which can

include hyperlinks added by the user. Cards can display
information about the page from which the Element was
stored, date of last access etc. The card can be

repositioned on the screen and resized by dragging the

mouse. The card can be moved (or copied) to another Leaf

-by dragging it onto the new leaf tab. The card can be

removed from the view entirely by dropping it onto the

15

20

25

- 51 -

waste bin icon. Changes in customisation settings are

returned to the server so that the View is kept up to

" date.

Each Element represents the ancestor Node of a meaningful
collection of Elements stored from a web-site via the
Client Interface described.earlier. This is rendered by

the users web-browser to appear within the card with the

- customisation set as required by the user.

The previous description described the data structure
underlving the invention in some detail. This section sets
out how this is tied in with the user interface. Rather

than describing the interface sequentially, as was done

-.for .the Client Interface, this section will describe how

all the key functionality is achieved.
Overall Structure of the Repository Interface.

The user accesses a repesitory by opening their home-page
on the server. This site can also be launched by using an
extension to the browser context menu, as described

earlier.

The data sent to the user’s web browser from the

respository server consists of 3 main groups:

1. Javascript Code (browser side script)

A fairly substantial piece of Javascript will be
delivered to the web browser. This would typically be
cached automatically by the user’'s machine and so there

will be very limited performance overhead. Much of the

..customisation data specific to the Repository/View

combination being viewed will be passed to the script as
parameters which the script uses to build the page being

viewed, customised for the situation.

10

15

20

30

- 52 -

The way that the script works and how it obtains,
processes and updates the customisation data will

described in some depth later.

2. Database dependent HTML generated by a CGI/Perl
script (server side script).

It is preferred to implement the web-server scripting
and database access using CGI/Perl but this is not the

only choice available. The way that this code works for

“the ‘significant parts of the process will be described in

some detail later. The process will be similar regardless

of language choice on the server.

3. Static HTML. Very little of the RUI is static HTML.
Most of it is customised for the specific
hsef/repository/view - either by the web-server or by

Javascript.
Obtained Data. .

User Details

-The -repository site reads a cookie, containing a username

and encrypted password combination, specific to the
repository server’s domain when the user first requests
access to the repository. This is checked against the
values stored in the User data table, using a simple SQL

query. If there is no cookie stored or the

‘username/password combination is invalid the user is

requested to try again or to register to the service.
This whole mechanism is commonplace on the Internet and so

will not be described in more detail.

Default Settings
Once the user has been validated access can be had to all
their preference data from the User data table. This

includes their default Repository and Group - this data is

- 53 -

~used to determine the initial data/display they see on the
RUI (i.e. their repository home page).
The default Repository is looked up in the Repository data
table. This then provides the server based script with the

3 default View, with its customisation data. This in turn is

. used to find all the Leaves included in this View, with
their customisation data. These in turn give the cards
with customisation data and finally the Elements
themselves. This data is obtained by a number of database

10 queries.

A significant block of HTML data; customisation settings
pertaining to the User’s default Repository and its
default settings have now been extracted from the

database.

15 There now follows a description of how the data from the

-.database is delivered t¢ the browser script.

There are a number of ways in which this can be achieved
but they involve the same basic principal. The following
describes a specific solution utilising the IFRAME

20 element, the HTML code element for creating floating

frames.

The browser side script creates a hidden IFRAME element on
the page, it is hidden by setting its style parameter
accordingly, which receives the data from the server

25 script by setting the IFRAME’s SRC attribute to call a

---server side script.
The following type of command would achieve this:
document.writeln(“<IFRAME NAME='hdnl’

SRC=' /perl/myData.cgi’
30 TSTYLE='visibility:hidden’></IFRAME>") ;

10

15

20

25

54

During the construction phase of the web page this allows
the server-side script ‘myData.cgi’ to be executed. This

server side script in turn creates a new browser side

.. script, within the hidden IFRAME, containing the

customisation data we require. This is done by making the
database queries mentioned in the previous section, and

writing the results out into a series of arrays.

These arrays allow the data to reflect the hierarchy of

--items to be displayed. Each piece of element data is

stored within a card data array, together with
customisation data. The data for a group of cards is held
in a leaf data array, the leaf data is held within a view

array.

“Once the script (myData.cgi in this case) has finished

executing and the results fully loaded into the IFRAME,
this data is available to the main browser script that is
controlling the creatiom of the page. The content of the

IFRAME can be accessed via

_mdocdment.frames.hdnl.arrayvariablename etc.

Using the customisation data from the database.

The overall structure of the page is determined, either by

HTML received from the server or by the script. This

--process is very commonplace and will not be described

here. At this stage there is a fairly content free page,
perhaps displaying a logo, copyright and terms and

conditions statement etc.

Once the customisation data has been loaded from the

“"server the controlling script proceeds to create the

remainder of the web-page. The overall customisation data
is used to add a little more detail to the page for

example the choice of wastebin image and by changing the

1y

15

20

25

30

- 5§ -

default colour scheme. This is done by modifying the

"style settings of items that already exist within the DOM

and inserting new items, such as the wastebin (the
wastebin is added in much the same way as Leaves and Cards

which are described below).

The required number of Leaves is added, the visibility

”setting of the default Leaf being set to ‘visible’ and

the others to ‘hidden’. On each Leaf the Cards are drawn.

Leaf construction and manipulation

Leaves will be added and deleted by the user after the

-page has finished loading. Therefore, when first

inserting the leaves into the document, the same mechanism
can be used. The DOM2 provides a standard way for doing
this, and the two browsers (IE5+ and NNé+) provide a
convenient, but non-standard, mechanism for inserting it

into the document. These methods themselves do not form

-Fpart of the DOM2 speciflcations but are more efficient
. than the DOM2 methodology.

In both cases a blank string (myHTML, say) is created. The
script loops over the number of Leaves, incrementally

adding HTML as text to myHTML. For each Leaf we do

something like the fellowing:

myHTML=myHTML+"”<DIV ID='Leafn’ STYLE='leafstylen'></DIV>"

Where Leafn is an identifier for Leaf number '‘n’ and

leafstylen incorporates the customised display settings

for the Leaf, making sure that the Leaf Style takes note
of which Leaf is to be displayed initially.

For NN6é now take myHTML and create a DocumentFragment (a

free standing DOM subtree) from it using the

__createContextualFragment method of the Range Element and

15

20

- 56 -~

insert it as a new child of the BODY element using the
appendChild method. Note that the same result could be
achieved by creating the Element and its attributes one at
a time by using DOM2 compliant methods. Whilst this is a

“purer approach it is far less efficient.

For IE5 take myHTML and use the insertAdjacentHTML method
of the Body Element to insert the HTML before the end of
the Element.

“Small ‘tabs’ are created to appear at the top of each
layer. These are created using the same layer technology
as the Leaves themselves with the DIV elements structured
to be appropriately dimensioned and placed just above the
Leaves themselves. On each DIV element is placed a text
based link. The text of the link is the Leaf Title, from

-mihe-customisation data, and the HREF attribute is set to
run a simple javascript function that switches the Leaf
being displayed to the 6éne corresponding to the tab being
clicked on by the mouse. It is possible to use a mouse
event to trigger the leaf switch in place of the HREF

..approach for more refined handling. The script merely
switches the visibility style flag on each Leaf layer to
achieve this. Additionally when a user selects a tab its
background colour is changed (using its style setting

again) to highlight the active Leaf title.

---Sub-leaves can be created within the layer representing
the leaf, with tabs appearing at the top of the sub-Leaf,
immediately below the tabs for the main Leaves themselves.
This is achieved by using a Leaf Tab as a pointer to
another View which is then created within the Leaf (as
opposed to within the BODY of the document). In the above

“description of creating a Leaf the appendChild (or
insertAdjacentHTML) method is applied to the Leafn element
instead of the BODY element.

10

15

20

25~

- 57 -

At any point the user can insert a new Leaf by running a

script function, which can be attached to a button, a main

menu item or the context menu.. This script creates a new
empty leaf using the same technique as described for
creating the other Leaves. In this case there is no data
to be obtained from the database so the new leaf settings
are set to the default levels for the View until they are

.overwritten by the user.

The overall page structure is now set up and the Leaves

are displayed. But they have no content.

Card construction.

.Cards are constructed in a similar way to the Leaves. 1In
this case, however, the card is a more complex item to

construct.

A card has a few core parts:

The containing layer, wkich is the containing outer

-boundary of the card; the element layer, a sub layer of

the containing layer that contains the Element stored in
the database; the comment layer, a sub layer of the
containing layer that contains any comments and additional
text fields related to the Element stored in the database;
and the resizing layer, a sub layer of the containing
“layer that provides a box that the mouse pointer can click
on to resize the containing layer and with it the element

and comment sub-layers.

These layers are called cardLayern, cardSublLayern,
cardCmtLayern, cardRszLayern in the following description,
"where n refers to the card number and is unique within the
View. In other words the numbering system does not restart
with each Leaf. The customisation settings, passed from
the database via the IFRAME element, are captured as STYLE

settings associated with each layer that makes up the card

15

20

25

30

- 58 -

(cardLayerStylen=cardlayern.style, cardSublLayerStylen,

" cardCmtLayerStylen, cardRszlayerStylen).

For each card, a piece of HTML (say ‘myHTML’) is

constructed along the following lines:

myHTML=myHTML

T+ v<pIV ID='cardlLayern’ STYLE='cardLayerStylen‘>

+ v <DIV 1ID='cardSubLayern’
STYLE=' cardSubLayerStylen'>"+myElementData+”</DIV>"
+ <DIV ID='cardCmtLayern’

STYLE=' cardCmtLayerStylen'>“+myCommentData+"</DIV>"

N <DIV ID='cardRsvlayern’
STYLE=' cardRszLayerStylen'></DIV>"
+7</DIV>"

Where myElementData is the raw HTML captured by the user

and obtained from the database and mycommentData contains

-.the .comments and descriptors that the user has opted to

display.

This piece of HTML is then inserted into the appropriate

Leaf Layer (as opposed to the BODY Element).

~Since the creation of the cards will cause their

associated Elements to be loaded from their relevant third
party servers (as determined by the SRC attributes of
images etc.) the order in which they are loaded needs to
be controlled. The script staggers the creation of cards

on all but the default leaf, in order to allow time for

“the cards on the default leaf to be loaded. This delay is

overruled if the user switches the display to another
Leaf. This extra sophistication is built into the leaf
switching script attached to each tab (as described in the

previous section). A flag is checked to see if the cards

on the new Leaf had been created, if not, then the cards

are created immediately.

15

20

25

30

~ 59 -

The position style setting of each layer is set to
‘absolute’ and then to define the dimensions as
percentages of the containing layer (cardLayern). This

means that the layers will all move and resize together.

Control of Card Content.

Stored elements and meaningful collections of elements are
being displayed out of the context in which they were

created and they may not be displayed the intended way.

--Some elements provide their dimensions as a matter of
course, a5 1is the case for most images for example or
where the original web publisher required for a specific
layout. 1In addition, the actual height and width of the
element as displayed on the screen was captured when the
user saved the element originally.

This information is used to determine the size and shape
of the element, as it should appear in its card, and clip
the region to ensure that the elements do not spill out
over the edge of the containing layers. This can be done
setting the clip style setting for the cardSublayer.

For some Elements, in particular images - with or without

associated link, the dimensions of the Element can be set

to resize with the dimensions of the cardSublayer. This is
done by setting their position style to ‘absolute’ and
fixing their width and height to fixed percentages of the
cardSubLayer. This has the effect of causing the image to
change shape as the user changes the shape of its
container. This will be possible for other select

Elements. For other Elements if the cardSublLayer gets too

small to contain the Element then the content will be

..clipped or scroll bars will appear (depending on the
Element type). The scroll bars appear if the overflow

style setting of the cardSubLayer is set to ‘auto’.

i0

15

20

25

30

- 60 -

Moving and Resizing Cards, moving cards to another Leaf or

-”dropping in the Wastebin.

With both IES5 and NN6 browsers mouse events can be
attached to various elements, including the DIV elements

from which the card is built.

.. The mouse events of interest are : onmousedown;

onmousemove; and onmouseup.

Many articles have been written about moving items on web
displays using the mouse and so a broad overview only of

one way of doing this is given Further information may be

—found at

http://developer.netscape.com/viewsource/goodman_drag/good

man_drag.html

onmousedown

Once the cards have been created the onmousedown method of

~“each cardlLayern is assigned to a script function

(‘engagelayer’). This function now ‘listens’ for this
event being triggered by the user’s mouse interacting with
this element on the screen. This function will be called
when the user presses down a mouse button on the portion

of the layer not covered by other items and not if the

mouée button is not pressed down. When it is called this
function sets a global variable (‘selectedLayer’) equal to
the element returned by the event (NNé=evt.target, and
IE=window.event.srcElement), records the (x,y) co-

ordinates of the mouse when is was pressed down and sets

__the onmousemove method of the document equal to a script

function (‘movelLayer’).

onmousemove

The first thing the script does is test to see if

‘selectedlLayer’ has been set - assuming it has, it now

...resets the location parameters for the cardLayern by

10

15

20

25

30

- 61 -

adding in the change in the (x,y)

co-ordinates of the

mouse since the mouse last moved (or was first pressed

down). Finally the recorded
mouse are updated.

triggered discretely but this

(%X,¥)

co-ordinates of the

The browser causes this method to be

happens frequently enough

that the movement of the Card on the screen appears smooth

to the user.

onmouseup

function (‘disengage’)

created. The first thing the

from the moment the layer is first

script does when called is

test to see if ‘selectedlayer’ has been set ~ assuming it

has it now sets selectedlLayer to null and unsets the

onmousemove method of the document.

the impression that the card has been

This gives the user

‘let go’.

To improve the user’s experience when moving cards on the
P

screen the following stéps are performed:

_.The background colour of the cardLayer changes when it is

--each other,

‘engaged’ . The whole cardLayer can also be made for

transport for moving.

The background colour changes
‘disengaged’ .
The z-index, which represents
is set to a high
engaged. This means that the

Cards on the screen. This may

back when is it

ranking of card images above
value when the Card is
Card appears above the other

be done by tracking the

highest allocated z-index value and using a z-index value

one greater than the highest used to date and update max

z-index variable each time this new high-level is set.

When the user drags the Card off the edge of the screen

there is a risk that the onmouseup method will be missed

by the script and the Card continue to move around even

though the mouse has been lifted.

This is countered by

- 62 -

tracking the edges of the browser window and forcing the
‘disengage’ function to be called each time the mouse

crosses the edge of the window.

..Re-sizing is done using the same principals as moving
) Cards on the screen. 1In this case however it is the
cardRszlayern that listens for the onmousedown and the
onmousemove events and the attached script function causes
the cardlayern to be resized as opposed to moved. Again
the same types of subtle improvements can be added

10 —-{changing background colour etc.).

Dropping items on a tab or wastebin is accomplished by
checking the mouse co-ordinates when the mouse button is
released to see if it is within the boundaries of the
wastebin or one of the Leaf Tabs. If it is over the

15 “wastebin it is deleted and if it is over a Leaf tab it is
moved to the appropriate Leaf.
Updating/Modifying.
Changes may be submitted to the database incrementally (as
cards are moved, dropped in the wastebin or moved to

20 .m%nofhér Leaf etc.) or at the end of a session when the
user is asked if they wish to save their new settings.
The mechanics are the same in either case. A third
approach combines those two and allows the updates to be
sent incrementally but not be committed to the database

25 .until the user confirms them.

If data is sent to the server incrementally, the user does

not need to wait for a response from the server before

continuing, this processing goes on in the backgfound.

In either situation it is important to ensure that all the
30 T updated data has been returned to the server before the

main window is closed otherwise some changes will be lost.

This can be guarded against by setting the onunload method

10

15

20

- 63 -

for the BODY Element of the RUI main window to give the
user the option to delay the close until the data has all

been received by the server.

Two alternative processes will now be described that can
be used to pass the updates back to the server (without

~“disruptive messages on the user’s screen).

1. Using a FORM GET type method on a hidden IFRAME

element.
Torms use two methods of returning data to web-zervers:

~The "‘post’ method, which was used earlier by the Client

Interface to pass the data to be saved to the server, and

the 'get’ method. This latter method is used here.

When used con a form the get method passes the parameters
_to be returned to the server as part of the URL - it may

look something like:

htttp://www.mydomain.com/cgi-bin/do-your-
stuff?x=21&apples=210

This is calling the script “do-your-stuff” and passing the

parameters x=21 and apples=210.

This type of URL does not have to be created by a form.

If a hidden IFRAME element is created and its SRC
Trattribute set equal to the URL of the server side script

with the required parameters tagged onto the end following

a ‘?', the server can read the parameters. Having used

the cookie to confirm the identity of the user, the server

side script can update their database entries accordingly.

10

15

20

25

30

- 64 -
2. Using Cookies to pass data back to the server.

Short lived cookies can pass data back to the server.
“These are created with an expiry time of only a few
seconds which is long enough to pass the data back to the
server. This is achieved by calling the server script via
a hidden IFRAME. Longer lived cookies can be used to hold
data being transferred back to the server thereby reducing
the risk of the user session being closed abruptly before
“'the data has all been transferred. Each domain only has a

limited number of cookies available and so longer lived

cookies would need very careful management.

Cards dropped in the wastebin or moving Cards to another
-Leaf..

When a Card is dropped in the wastebin a message is sent
to the server (either immediately or at the end of the
session depending on how the system is configured) telling
the database to delete this Card from the User’s Leaf (and
hence View). If the Element, contained in the Card being
“deleted, is not associated with any other Card it is also

deleted from the database.

When a Card is moved to another Leaf, the database is

updated to change the Card’'s Owner Leaf. Next time that
..View is loaded, the Card will appear in the new Leaf.

The script keeps its own record of which Leaf each card

belongs to, based on when the data was first loaded and

the changes the user has executed subsequently and so the

data does not need to be refetched from the database when

a new Leaf is displayed.

Uploading data from a user’'s browser based
favorites/bookmark collection: In IE5 making a call, in a
script, to ‘'window.external.ImportExportFavorites’ allows
the repository server to obtain a copy of the user’'s

favorite collection. Microsoft choose to format this data

10

15

20

25

30

- 65 -

in the format of Netscape’'s Bookmark file. In Netscape a
signed script can easily be given the permission to obtain

a copy the user’s bookmark file.

In either case what is received at the server is a set of
bookmarks in Netscape bookmark file format. This file is
an HTML file setting out the bookmarks in an HTML
definition list. This is a well structured file
consisting largely of <A> type links with text
-descriptors, that can be easily parsed and uploaded into a
basic set of text based elements and cards in a repository

embodying the invention.

Having described the construction and operation of

preferred embodiments of the invention some points will

The definition of meaningful collection of elements is

specific to HTML and in‘"particular HTML as it is currently

defined. Different rules would be used for a different

Markup Language and also new rules or modifications to the
_mfoliowing rules may be necessary if further additions or
modifications are made to the specifications of HTML. It
is to be understood that the present invention is not

limited to HTML or to any particular mark-up language.

implementation, could be derived from the HTML DTD
referred to below. This type of approach would allow

application to other visual XML/SGML type applications.

In some cases, the tagName is used as a shortcut . to
-..identify the Element e.g. '<BODY>’ instead of an ‘Element
Node with a tagName = “BODY”’. In doing so it should be
noted that the tag need not always appear in the raw HTML

file for the associated Element to exist within the DOM.

5

10

15

20

25

30

- 66 ~

1. Skeletal Elements -~ Used to Stop Node Traversal

These are the tags that are used to stop the traversing up

through the DOM Node tree. 1In broad terms they provide

the skeleton of the document. If the script encounters
either of the following of these it stops searching for a

further parentNode:

<BODY>

<IFRAME>

2, Base Nodes of Meaningful Collections

The HTML4 Strict Document Type Definition defines groups
of elements know as Entities identifiable as %name. Those
that come under the following definitions form common
ancestors to meaningful collections of elements. Note
that one or two elements are over-ruled in the list of

excluded elements below:
gfontstyle ‘

¥phrase

$special

¢block
-.In addition the following Elements are considered
meaningful:

<BODY> special case, see below

 Strictly speaking this should be ignored as a

deprecated Element but it is still in very common use.

~In practice, however, one or two of these may be excluded
as they are not very meaningful. For example
 (within
$special) is merely a forced line break or <HR> (within
$block) .

3. Special Cases
"'Some elements receive special treatment in order to

capture the appropriate information. Specifically:

5

10

15

20

25

30

- 67 -

<MAP>, which is included within %special has no meaning
.“without an associated , <OBJECT> or <INPUT> - the

script therefor searches for the appropriate ‘partner’

element.

<BODY> . The content of a BODY Element will be displayed

within a DIV Element in the repository so the content is
.. placed within a new <DIV> element instead.

Text Nodes are not elements but a parent Element is

created for them that allow them to be added to the

repository.
L. Ron-peaningiul Elgments

The following Elements are not considered meaningful and
are passed over during all Node traversals, but they will

be included (where possible) within the DOM subtree saved.

, <INS> - these are used to track changes in
~documents. ‘
Deprecated Elements such as <APPLET>, <CENTER>, <DIR>,
<ISINDEX>, <MENU>, <S>, <STRIKE>, <U>.
Elements that only exist with the HEAD element such as
<META>, <STYLE>.
<NOFRAMES>, <NOSCRIPT>. Technically these are meaningful
“"elements but by their very nature will not be saved by the
script in the latest browsers. The reason is that IE5 ¢
NN6 support both FRAMES and SCRIPTS and so these alternate
tags have no meaning in this context.
<HTML>, <HEAD>, <FRAMESET>, <FRAME> cannot be reached by
_the script.
'Elements that exist exclusively within <TABLE>,
<FORM>, <OBJECT> where not specifically allowed by other
rules - this would include for example <TD>, <TBODY> or

<SELECT>.

10

15

20

25

30

5. Excluded Elements

---It is chosen to exclude <SCRIPT> elements as their content

can have unforeseen effects on the behaviour of the

repository.
Rules for Treatment of Special Cases

For some types of nodes the script must find associated

nodes or data.

For example, if a user activates the context menu over an
image map (‘'<MAP>’) the Node returned by the context menu

is actually the Node of the Map. The Map may be used by

_.an IMG, OBJECT or INPUT elements to trigger different

actions, such as moving to different parts of the page or
opening specific new pages. It is therefore necessary to
search these other Nodes to find the appropriate element

is matched to the MAP.

~-For -example, the collection of images in the document can

be obtained from the array of image Nodes held in
‘document.images’ within the DOM. It is then a simple
matter to scan through these to find the imades using an
image map and in particular the one using the image map on

which the mouse was placed. OBJECT and INPUT nodes can be

“searched by examining the NodeList returned by a

getElementsByTagName ("OBJECT”) or
getElementsByTagName (“INPUT”) at the document level.

In another situation style sheets/style definitions may be
needed to interpret the class attributes of nodes but the
bresently preferred embodiment extracts the style
information of each node independently so this is not
necessary. If it is chosen to capture global style
settings then these can be obtained by a straightforward

DOM function call.

- 69 -

Rules for Capturing Single or Combinations of Non-

Meaningful Nodes

_ It was stated that '<TD>' and ‘<TR>' tags did not

10

15

20

25

30

represent meaningful collections of elements. 1In
isolation they do not, without a ‘<TABLE>’ tag, represent
well formed HTML. To the user, however, it is appealing
to select rows from tables or groups of adjacent cells.

It is therefore made possible to select combinations of

.nodes . which share a common ancestor node type. For

example, table data or table rows could be lifted from the
tzble. In this situation the script would create a new
ancestor of the appropriate type possibly using the
formatting attributes of the actual table from which they
are being selectively extracted.

For example, one or more <TD> nodes would be surrounded by
a <TR> node. One or more <TR> nodes would be surrounded
by a <TABLE> node or a guitable combination of <COL>,
<ROW>, <TBODY> and <TABLE> nodes. To undertake the later
approach will require an analysis of the elements of the
TABLE and identification of which rows and columns are
affected and picking out the required formatting
information. If complete rows or columns are selected then

row and column heading could be picked up also.

It was stated, strictly speaking, that TEXT Nodes do not
”fepfesent meaningful elements. Some of the time Text
Nodes will be the childNode of a text formatting Element.
in this case the collection of Elements are captured at
the formatting Element level. However it is quite common

for text Nodes to appear independently of formatting

_elements, for example within a Link (or <A>) Node. The

embodiment must therefore transform this type of Node into
an Element in order to save and subsequently display the

text. This is done by embedding the text within suitable

15

20

25

30

- 70 -

neutral formatting element such as a Paragraph (<P>)

element.

Additionally the <BODY> element can not be saved as is
..within a <DIV> element. This situation is handled by
extracting its childNodes and giving them a new parent

Node of type <DIV>.

Facilitating, in this way, the combination, or re-
characterisation, of ‘independent non-meaningful’ elements
—-into one, or more, meaningful collections opens up a vast

array of possibilities.

Extracting HTML from the DOM

At least 3 different techniques could be employed for

extracting the pertinent data from the DOM.
The first approach described above, scans the Node subTree
extracting tagName, attributes, style settings and
nodeValues. The two main alternatives are to clone the
Node, and its descendants, or use a non-DOM method
implemented in IE (and it is believed in NN6 when it is

released officially).
Cloning or Importing the subTree

The actual DOM subTree of an element can be copied,
_thereby eliminating the need to recreate the HTML, only to

have the browser parse it back into the DOM as a copy.

The structure and content of the Node and all its

descendants can be copied by using a cloneNode or

inportNode method of the Node in question. Using. the

deepClone option forces a copy of all the descendant Node
--data. This is not a pointer to the original subTree but,

with the deepClone option set, a full copy of all its

15

20

25

30

- 71 -

content. This allows the Node data to transferred to the

“new window.

The data must then be transferred to the database on the
repository server. Since there is not a means of
transferring this data to the server in its native DOM
form, it is necessary to ‘translate’ the data into its

implied raw HTML in order to transfer the data as text.

If a method is developed to transmit the native DOM data
to the server this approach may offer significant ease of
programming and efficiency benefits over the approach

_described in the main body of the description.
Using the innerHTML data

Internet Explorer provides access to its own version of
the implied raw HTML of a Node and its descendants in the
--form of the innerHTML. Because of developer pressure NN6
is likely to also include this field when it is released.
This data 1is not within the DOM specification and should
not be used if DOM compliance is considered important.
Other DOM compliant browsers may not offer this field and
hence their users would be barred from using this method

—"if this data field was used.

There are efficiency benefits in using this data as it
eliminates the need to extract recursively the childNode,
attribute, style and nodeValue data, but it has
significant drawbacks. As was described earlier ‘SRC’,
""VHREF' and other URI type attributes must often be
modified to ensure that the full path is captured in the
database. If the innerHTML data field was used it would
be necessary to search it for instances for ‘SRC’ and
‘HREF’ and make the suitable amendments. Ensuring that

only the instances where ‘SRC’ and ‘HREF’ are used as Node

- 72 -

attributes would require involved logic and may well end

up being less efficient than recursively extracting the
--information from the tree. If a suitable - robust and

efficient - wnethod was found, then it would be possible to

5 consider the use of innerHTML in a commercial environment.

In the description of the repository user intérface it was
mentioned that a Hierarchical Tabular Representation with
"Views coulc be adopted. An example of such a
representation is shown in Figure 1ll. Here, the user has
10 previously saved five elements and has opened the

repository choosing to use a simple tabular interface.

Three table headings are shown, although by cohfiguring

the site, the user can add as many as she wishes.

The individual images and their links can be re-
15 categorised by selectiné the table headings from the drop-
~—down menus to the left of each element. Sub-categories
are also available, allowing a hierarchical representation
of the bookmarked elements, similar in functionality to
the browsers and other online bookmark services, albeit
20 with a visual (as opposed to text-based) representation of

the bookmarked elements.

This interface to the repository can be used with the same
database structure as was described earlier, but uses

fewer of the customisation settings.

25 As has been mentioned, the invention is not limited to
“HTML, but is applicable to any SGML based system.including
visually representable XML. Many systems developers are
storing ‘documents’ in XML format, to allow easier cross

platform development, conversion from one application to

FRv)

15

20

25

39

- 73 -

another and even embedding different types of documents

within each other.

In the near future, sophisticated word processing

_documents and spreadsheets will become part of a web-page,

and vice-versa. The distinction between web-pages written
in HTML and other types of documents, now stored in XML,

will become increasingly blurred.

Thus, it is therefore important to recognise that the

--various aspects of the invention are applicable to all

types oi XML as long as there is an application, such as
the web browsers used or an advanced word processor, that
can parse and display this information, and that there is

suitable access to the DOM.

_The .latest versions of the main web-browsers and the

specification for the DOM and CSS are anticipating the
inclusion of a broader set of markup tags and data into
the web-browsing context. By setting out the rules for
defining meaningful elements and collections of elements,

as defined by their ancestor, exclusively in terms of the

--DTD -for the XML being parsed, the various aspects of the

invention can be applied to all forms of browser parseable

XML.

As long as the browser is able to parse and display the

XML then it is possible to capture and store most

--meaningful elements.

The interface would remain the same as would most of the
underlying code. However, there are some methods specified
in the DOM specifically for dealing with XML that would

need to be used in place of their HTML equivalents.

.Implementation of this would be well within the

capabilities of those skilled in the art.

10

- 74 -~

_The Repository User Interface would be suitable to store,

display and organise visually parseable XML, if provided

with suitable style sheets.

Some of the special treatment of specific HTML elements,

such as the resizing of elements, would not work ‘out of

..the -box’ and some customisation of the application may be

required for specific instances or to take advantage of
some cof the functionality of specific situations, such as
a musical notation implementation that has sound

incorporated.

—+Various other modifications and enhancements within the

scope of the invention will occur to those skilled in the
art. The invention is limited only by the scope of the

claims appended hereto.

10

15

20

25

- 75 -

CLAIMS

A method of storing a portion of a mark-up language

page,

comprising the steps of:

identifying, from a visual representation of the page,

a portion of the visual representation of the mark-up

'1anguége page to be stored;

identifying a list of candidate mark-up elements from a

predefined set of elements for storage;

selecting elements from the list; and

storing the selected elements.

A method according to claim 1, comprising storing

the selected elements in a repository accessible on-

line.

Py

A method according to claim 1 or 2, wherein the step of

identifying a 1list of candidate mark-up elements
comprises overlying a pointer device or cursor over the

identified portion.

A method according to claim 3 wherein the step of

identifying a 1list of candidate mark-up elements
comprises selecting a menu and selecting from the menu

a command to select the portion.

A method according to claim 4, wherein the menu is an

Internet browser context menu.

A method according to any of claims 1 to 5, wherein the
step of identifying a list of candidate mark-up elements

comprises identifying the nodes of the Document Object

10

15

20

13.

10.

11.

12.

- 76 -

Model (DOM) which represent the identified elements, and

extracting the mark up code for the identified nodes.

A method according to claim 6, wherein the step of
identifying the nodes comprises traversing the node tree
of the DOM and identifying ancestor and descendant nodes
representing mark-up elements in the predefined

selectable set of mark-up elements.

"A method according to claim 7 wherein the step of

traversing the node tree 1includes the step of
establishing a 1list of mark-up elements from the

predefined set.

A method according to claim 8, wherein the predefined

set of elements is based on the mark-up document type
definition (DTD).

A method according to any of claims 6 to 9, wherein the

step of traversing the node tree comprises determining

" from a predefined rule set whether a given node

represents the end of the node tree traversal in a given

direction.

A method according to claim 10, wherein the
predetermined rule set is based on the mark-up document

type definition (DTD).

A method according to claim 6 to 11, wherein the step of

identifying the nodes comprises finding related nodes.

A method according to any of claims 6 to 12, wherein the
step of identifying the nodes comprises selecting a node

representing a mark-up element excluded from the list of

10

15

20

25

14,

15,

16.

17,

19.

18.

- 77 -

candidate mark-up elements where the selected node is
assigned an ancestor node representing a mark-up within

the predetermined set.

A method according to any of claims 6 to 13, wherein the
step of extracting the mark up code comprises extracting

raw mark—-up code.

A method according to any of claims 6 to 13 wherein the

step of extracting the mark up code comprises extracting

. the document obiject model sub-tree from the identified

nodes.

A method according to claim 14, wherein the step of
extracting the raw mark up code comprises creating a

blank mark-up code string, adding to the string the

.6pening tag from the tag name of the node, adding any

non-default attributes from the node to the code string
and adding any non-default style settings to the code

string.

. A method according to any of claims 14 to 16, wherein

the step of extracting the mark up code comprises
passing the mark-up code represented by the node to a

new document.

A method according to claim 17, wherein the mark-up code

passed to the new document is written as a series of

layers.

A method according to claim 17 or 18, wherein the

element for storage is selected from the 1list of

- candidate elements by means of a menu or according to a

rule set.

~20.
s 21
10

22.
15

23.
20

25.

26.
25

g

A method according to claim 19, wherein the step of
selecting the element for storage further comprises
posting a mark up code from on the new document to a

repository on a remote server.

A method according to any preceding claim, wherein the
step of storing the selected element comprises accessing
a remote server, the step of accessing comprising
supplying user details to the server and sending the
data in the mark-up code form to be stored in the user's

repository.

A method according to any preceding claim, wherein the
each element in the list of candidate elements comprises
a meaningful element or collection of elements, each
element being or being associated with a mark-up tag and

the list of candidate elements comprising a set of

'meaningful elements.

A method according to any preceding claim, wherein the

mark-up code is HTML.

A method according to any of claims 1 to 22, wherein the

mark-up code is XML.

A computer program comprising program code means for

performing all the steps of any one of claims 1 to 24

. when the program is run on a computer.

A computer program comprising program code means for
performing all the steps of any one of claims 1 to 24
when the program is run within an Internet Browser on a

computer.

10

15

20

27.

28.

29.

the

- 79 -

A computer program product comprising program code means
stored on a computer readable medium for performing the
method of any one of claims 1 to 24 when the program is

run on a computer.

A computer program product comprising program code means
stored on a computer readable medium for performing the
method of any one of claims 1 to 24 when the program is

run within an Internet browser on a computer.

Apparatus for storing a portion of a mark-up language

page, comprising:

.means for identifying, from a visual representation of

page, a portion of the visual representation of the

mark-up language page to be stored;

30.

31.

means for identifying a list of candidate mark-up
elements from a predefined set of elements for storage;

means for selecting elements from the list; and

means for storing the selected elements.

Apparatus according to claim 31, wherein the storage

means comprises a repository accessible on-line.

Apparatus according to claim 29 or 30, wherein the
means for identifying a list of candidate mark-up
elements comprises means movable to overlie the

identified portion.

- Apparatus according to claim 31, wherein the means for

identifying a list of candidate mark-up elements

comprises a selectable icon or menu item.

33.
34.

5
35.

10
36.

15
37.

20
38.

25
"39.

- 80 -

Apparatus according to claim 32, wherein the menu is

an Internet browser context menu.

Apparatus according to any of claims 29 to 33, wherein
the means for identifying a list of candidate mark-up
elements comprises means for identifying the nodes of
(DOM)

identified elements,; and means for extracting the mark

the Document Object Model which represent the

up code for the identified node~

Apparatus according to claim 34, wherein the means for
identifying the node comprises means for traversing
the node tree of the DOM and identifying ancestor and
descendant nodes representing mark-up elements in the

predefined set of mark-up elements.

Apparatus according to claim 35, wherein the means for
traversing the node tree includes means for
establishing a list of mark-up elements from the

candidate list.

Apparatus according to claim 36, wherein the
predefined set of mark-up elements is based on the

mark-up document type definition (DTD).

Apparatus according to any of claims 34 to 36, wherein

the means for traversing the node tree comprises means
for determining from a predefined rule set whether a
given node represents the end of the node tree

traversal in a given direction.

Apparatus according to claim 38, wherein the
predetermined rule set is based on the mark-up

document type definition (DTD).

15

20

25

-.40.

41.

42.

43,

45.

- Bl -

Apparatus according to any of
the means for identifying the

finding related nodes.

Apparatus according to any of

the means for identifying the

selecting means for selecting

mark-up element excluded from

claims 34 to 39, wherein

node comprises means for

claims 34 to 40, wherein
nodes comprises
a node representing a

the predefined set of

mark-up elements where the selected node is assigned

an ancestor node representing

predetermined set,

Apparatus according to any of

a mark-up within the

claims 34 to 41, wherein

the means for extracting the mark up code comprises

means for extracting raw mark

Apparatus according to any of

up code.

claims 34 to 41, wherein

the means for extrébting the mark up code comprises

means for extracting the document object model sub-

tree from the identified nodes.

Apparatus according to claim 42, wherein the means for

“extracting the raw mark up code comprises means for

creating a blank mark-up code string, means for adding

to the string the opening tag

from the tag name of the

node, means for adding any non-default attributes from

the node to the code string, and means for adding any

non-default style settings to the code string.

Apparatus according to any of claims 34 to 44,

comprising means for passing the extracted mark-up

code represented by the node to a new document.

10

15

20

25

46.

47.

48.

49.

50.

51.

52.

- 82 -

Apparatus according to claim 45, wherein the means for
passing the mark~-up code comprises means for passing
the mark-up code mark-up code passed to the new

document as a series of layers.

Apparatus according to claim 45 or 46,

comprising a

menu or a rule set to select the element for storage.

Apparatus according to claim 47, wherein the means for

selecting the element for storage further comprises
means for posting mark up code from the new document

to the storage means on a remote server.

Apparatus according to any of claims 29 to 48,
comprising means accessing a remote server, the
accessing means including means for supplying user
details to the server and for sending the data in the

mark-up code form to be stored in the user’s

" repository.

Apparatus according to any of claims 29 to 49, wherein
each element in the candidate list comprises a

meaningful element or collection of elements, each

. element being or being associated with a mark-up tag

and/or attribute and the candidate elements comprising

a set of meaningful elements.

Apparatus according to any of claims 29 to 50, wherein

the mark-up code is HTML.

Apparatus according to any of claims 29 to 50, wherein

the mark-up code is XML.

10

15

20

25

33.

ey

56.

55.

57.

58.

--59.

60.

61.

- 83 -

An Internet browser comprising apparatus according to

any of claims 29 to 52.

A method according to any of claims 2 to 28, wherein
the identified portions are stored in a repository in
a non-hierarchical form whereby a plurality of
identified portions may be displayed for viewing

simultaneously.

A method according to claim 54, wherein the repository
comprises a plurality of cards, each card comprising a
visual representation on screen of a stored identified

portion.

A method according to claim 55, wherein the cards are
arranged into leaves, each leaf comprising at least

one card.

A method according to claim 56, wherein each leaf has

- an index tab.

A method according to claim 56 or 57, wherein the

cards are moveable around the leaves.

- A method according to c¢laims 56, 57 or 58, wherein

each card may form a part of one or more leaves.

A method according to any of claims 57 to 59,

comprising arranging a plurality of leaves into views,

each view comprising a set of identified mark-up

language page portions and their attributes.

A method according to claim 60, wherein a given leaf

may form a part of a plurality of views.

10

15

20

25

61.

63.

64

65

66.

67.

68.

69. -

- 84 -

A method according to any of claims 55 to 610, wherein
each card comprises a containing layer containing an
outer boundary and a first sub layer containing the

identified mark-up language page portion.

A method according to claim 62, wherein each card
further comprises a second sublayer containing text
fields associated with the elements to be displayed in

each card.

A method according to any of claims 55 to 63, wherein

the size of the cards is variable by a user.

A method according to claim 64, wherein each card

further comprises a resizing layer, wherein the size

"of the card displayed to a user may be varied by the

user.

A method according to any of claims 56 to 65, wherein

the leaves may be customised by a user, whereby the

~user defines one or more leaves and the cards

comprising each leaf.

A method according to any of claims 56 to 66 wherein

each leaf comprises one or more layers.

A method according to any of claims 60 to 67, wherein
the views may be customised by a user, whereby the
user defines one or more views and the leaves

comprising each view.

A method according to any of claims 54 to 68,
comprising customising the display presented to a user

by modifying style settings.

10

15

20

70,

71.

72,

73.

74.

~75.

- 85 -

" A method according to any of claims 54 to 69, wherein
the repository is held at a remote server remote from
a user and a user can view stored mark-up language
page portions by accessing the remote server on-line
and displaying the stored portions within a web

browser.

A method according to claim 70, comprising a plurality
of repositories, each repository bing associated with
one or more users, the method comprising defining
access parameters whereby access to a given user’s
" stored mark-up language page portions may be limited
to the user, available to any third party or partially

restricted according to the access parameters.

A method according to any of claims 54 to 71, wherein

_the cards, leaves and stored mark-up language page

portions are stored as customisable mark-up code

layers.

A method according to claim 72, wherein the

customisable mark-up code layers are HTML <DIV> or

" elements.

A method according to claim 72, wherein the

customisable mark-up code layers are XML code layers.

" A method according to any of claims 54 to 74, wherein
the selectable mark-up language page portions are
mark-up code elements corresponding to one or more of

a predetermined set of meaningful elements.

76.
77.

5
78,

10

15
9.

20
80,

25
~81.

' remote server,

'Apparatus according to claim 79,

- B6 -

A computer program comprising program code means for
performing all the steps of any one of claims 54 to 75

when the program is run on a computer.

A computer program product comprising program code
means stored on a computer readable medium for
performing the method of any one of claims 54 to 75

when the program is run on a computer.

A method according to claim 1, comprising at a user
terminal connected to the Internet and running an
Internet Browser, wherein the mark-up language page is
displayed in the browser, and the repository is at a
wherein a plurality of identified
portions are stored in a non-hierarchical form whereby
a plurality of identified portions may be displayed

for viewing simultaneously.

¢

. Apparatus according to claim 29, wherein the storage

means comprises a repository for storing the
identified portions for viewing in a non-hierarchical
form whereby a plurality of identified portions may be

displayed for viewing simultaneously.

wherein the
repository comprises a plurality of cards, each card
comprising a visual representation on screen of a

stored identified portion.

- Apparatus according to claim 80, wherein the cards are

arranged into leaves, each leaf comprising at least

one card.

10

15

20

25

82.

B4.

86.

87.

88.

89.

90.

- 87 -

Apparatus according to claim 81, wherein each leaf has

an index tab.

. Apparatus according to claim 81 or 82, wherein the

cards are moveable around the leaves.

Apparatus according to claims 80, 81 or 82, wherein

each card may form a part of one or more leaves.

Apparatus according to any of claims 80 to 84, wherein
the repository comprises at least one view, each view

comprising one or more leaves.

_Apparatus according to claim 85, wherein a given leaf

may form a part of a plurality of views.

Apparatus according, to any of claims 79 to 86, wherein
each card comprises a containing layer containing an

outer boundary and a first sub layer containing the

"identified mark-up language page portion.

Apparatus according to claim 87, wherein each card
further comprises a second sub layer containing text

fields associated with the elements to be displayed in

~each card..

Apparatus according to any of claims 79 to 88, wherein

the size of the cards is variable by a user.

~Apparatus according to claim 89, wherein each card

further comprises a resizing layer, wherein the size
of the card displayed to a user may be varied by the

user.

10

15

20

25

91.

92,

93.

94,

95.

~-96.

97.

- 88 -

Apparatus according to any of claims 81 to 90, wherein
the leaves may be customised by a user, whereby the
user defines one or more leaves and the cards

comprising each leaf.

Apparatus according to any of claims 81 to 91,

wherein each leaf comprises one or more layers.

Apparatus according to any of claims 85 to 92, wherein

the views may be customised by a user, whereby the

~user can define one or more views and can define the

leaves comprising each view.

Apparatus according to any of claims 79 to 93,
comprising means for customising the display presented

to a user by modifying style settings.

Apparatus according to any of claims 79 to 94,
comprising a plurality of repositories, each

repository having an assigned user or group of users.

" Apparatus according to any of claims 79 to 95, wherein

the repository is held at a server remote from a user
and a user can view stored mark-up language page
portions by accessing the remote server on-line and

displaying the stored portions within a web browser.

Apparatus according to claim 96, comprising means for
defining access parameters whereby access to a user's
stored mark-up language page portions may be limited
to the user, available to any third party or partially

restricted according to the access parameters.

10

15

20

25

30

98.

99.

100

101

TTi02

103

- BQ -~

Apparatus according to any of claims 79 to 97, wherein
the cards, leaves and stored mark-up language page
portions are stored as customisable mark-up code

layers.

Apparatus according to claim 98, wherein the

customisable mark-up code layers are HTML <DIV>

elements.

Apparatus according to claim 99, wherein the

customisable mark-up code layers are XML code layers.

Apparatus according to any of claims 79 to 100,
wherein the selectable mark-up language page portions
are mark-up code elements corresponding to one or more

of a predetermined set of meaningful elements.

Apparatus accordind to claim 29, comprising, at a user
terminal connectable to the Internet and running an
Internet Browser, wherein the mark-up language page is
displayed in the browser and the repository is at a
remote server, wherein a plurality of idéntified

portions are stored in a non-hierarchical form whereby

a plurality of identified portions may be displayed

for viewing in the user’'s browser simultaneously.

Apparatus according to claim 29, comprising, at a user

terminal connectable to the Internet and running an

- Internet Browser the means for identifying and

selecting the portion of the mark-up language page
displayed in the browser to be stored; and af a remote
server, the storage means comprising a repository for
storing the identified portions, the identified

portions being stored for display as sizable cards

"arranged in one or more leaves, the leaves being

10

15

20

25

104.

- 90 -

arranged in one or more views, each view comprising
one or more leaves, whereby a plurality of identified
portions may be displayed for viewing in the user’s

browser simultaneously.

Apparatus according to claim 29, wherein the storage
means comprises a database for storing mark up
elements comprising a plurality of tables including an
element data table for storing data about the mark-up
elements; a card data table storing information about
the display, formatting and positioning of the element
data stored in the element data table; a leaf data

table for storing data regarding cards which can be

_displayed in a common leaf; and a view data table for

105.

106.

107.

108.

109.

storing data about collections of leaves.

A database according to claim 104, comprising a
repository data table for storing data regarding

individual user repositories.

A database according to claim 104 or 1053, comprising
a groups data table for storing data about groups of

users.

A database according to claim 104, 105 or 106,
comprising a user data table for storing details of

authorised system users.

A database according to claims 106 and 107,
comprising a user group data table for storing a

mapping of users to groups.

A database according to any of claims 104 to 109,

comprising a permissions data table for storing

10

15

20

110.

111.

- wherein the element data table stores extracted mark-

112.

113.

114.

- 91 -

details of access rights of individual users or groups

to data stored in other tables.

A database according to claim 109, wherein access
rights stored in the permissions table include the
extent and nature of the access users or groups have

to the data to which they are granted access.

B database according to any of claims 104 to 110,

up code, and address information regarding the mark-up

elements.

A database according to claim 111, wherein the

elements data table further stores information

regarding the time of creation of an entry in the
elements data table and the time it was last viewed by

a user. “

A database according to any of claims 104 to 112,

- wherein the card data table stores the location of

elements to be displayed each cards together with the

display parameters.

A database according to claim 113, wherein the

~display parameters include the size of the card and

115.

116.

its position on a display.

A database according to claim 112 or 113, wherein the
card data table further stores text fields associated

with the elements to be displayed in each card.

A database according to any of claims 104 to 115,

wherein the leaf data table stores a leaf title for

10

15

20

25

117.

- 92 -

display as a tab, and stores data regarding cards to

be placed in each leaf.

A database according to any of claims 100 to 116,

wherein the permission data table stores data

- associating permissions granted with one of the

118.

~119.

121.

element table, the card table, the view table, the
group table or a repository table, the user to which a
permission relates, the owner of the permission and

the nature of the permission.

A database according to claim 117, wherein the nature
of the permission is selected from the group
comprising an ability to read, modify, create, delete

and administer data in a given table.

A method according to claim 1 comprising the steps of
defining an element data table for storing data about
the mark-up elements; defining a card data table for

storing information about the display, formatting and
positioning of the element data stored in the element

data table; defining a leaf data table for storing

" data regarding cards which can be displayed in a

common leaf; and defining a view data table for

storing data about collections of leaves.

A method according to claim 119, comprising defining

. a repository data table for storing data regarding

individual user repositories.

A method according to claim 119 or 120, comprising
defining a groups data table for storing data about

groups of users.

122.

123.
5
124.
10
125.
15 —126:
127
20
128.
25

- 93 -

A method according to claim 119, 120 or 121,

comprising defining a user data table for storing

" details of authorised system users.

A method according to claims 121 and 122, comprising
defining a user group data table for storing a mapping

of users to groups.

A method according to any of claims 119 to 122,
comprising defining a permissions data table for
storing details of access rights of individueal users

or groups to data stored in other tables.

A method according to claim 124, wherein access
rights stored in the permissions table include the
extent and nature of the access users or groups have

to the data to which they are granted access.

[4

A method according to any of claims 119 to 125,
wherein the element data table stores extracted mark-
up code, and address information regarding the mark-up

elements.

. A method according to claim 126, wherein the elements

data table further stores information regarding the
time of creation of an entry in the elements data

table and the time it was last viewed by a user.

A method according to any of claims 119 to 127,
wherein the card data table stores the display
location of elements to be displayed each cards

together with the display parameters.

10

15

20

129.

130.

132.

133.

~ 094 -

A method according to claim 128, wherein the display
parameters include the size of the card and its

position on a display.

A method according to claim 128 or 129, wherein the
card data table further stores text fields associated

with the elements to be displayed in each card.

A method according to any of claims 119 to 130,

" wherein the leaf data table stores a leaf title for

display as a tab, and stores data regarding cards to

be placed in each leaf.

A method according to any of claims 119 to 131,

. wherein the permission data table stores data

associating permissions granted with one of the
eiement table, the card table, the view table, the
group table or a repository table, the user to which a
permission relates, the owner of the permission and

the nature of the permission.

A method according to claim 132, wherein the nature
of the permission is selected from the group
comprising an ability to read, modify, create, delete

and administer data in a given table.

	2007-09-19 Foreign Reference

